Layout and DFM

Shallow Trench Isolation (STI)

image-20241121211242335

image-20241121211348053

drain and source sharing

Planar process vs. FinFet process

local_Interconnect.drawio

Standard Cell Tapcell

tapcell.drawio

Guard Ring in Custom block

Place well tie and substrate tie where they are needed. Redundant guard ring consume area and increase the routing of critical signal net.

guardring_stypes.drawio

Continuous OD

Performance & Matching

image-20220219223723289

current mirror

split diffusion with dummy transistors

mirror_continuous_OD_split_with_dummy.drawio

cascode structure

off transistor split diffusion

cascode_continuous_OD_split_with_dummy.drawio

sharing source & drain

sharing_SD.drawio

Stacked MOSFETs

Matching

  1. Common Centroid

    The common centroid technique describes that if there are n blocks which are to be matched then the blocks are arranged symmetrically around the common centre at equal distances from the centre. This technique offers best matching for devices as it helps in avoiding cross-chip gradients

    HTML5 Icon

  2. Inter-digitation

    Interdigitation reduces the device mismatch as it suffers equally from process variations in X dimension. This technique was used to layout current mirrors and resistors in PTAT and BGR circuits. In the Figure-15 below each brown stick represents a PFET of uniform length. This representation is termed as an inter-digitated layout.

    HTML5 Icon

reference

Mikael Sahrling, Layout Techniques for Integrated Circuit Designers 1st Edition , Artech House 2022

LAYOUT, EE6350 VLSI Design Lab SMART TEMPERATURE SENSOR URL: https://www.ee.columbia.edu/~kinget/EE6350_S16/06_TEMPSENS_Sukanya_Vani/layout.html

A. L. S. Loke et al., "Analog/mixed-signal design challenges in 7-nm CMOS and beyond," 2018 IEEE Custom Integrated Circuits Conference (CICC), 2018, pp. 1-8, doi: 10.1109/CICC.2018.8357060.

Stacked MOSFETs in analog layout https://pulsic.com/stacked-mosfets-in-analog-layout/

JED Hurwitz, ISSCC2011 "T4: Layout: The other half of Nanometer CMOS Analog Design" [slides, transcript]