Relative Sensitivity
Assuming Target \(T\) ( for example, the total resistance) is function of \(x_1,x_2,...,x_N\), then total variation can be expressed as
\[\begin{align} dT &= \sum_{n=1}^N\frac{\partial T}{\partial x_n}dx_n \\ &= \sum_{n=1}^N\frac{\partial T}{\partial x_n}x_n\cdot \frac{dx_n}{x_n} \end{align}\]
Then, we obtain relative variation \[\begin{align} \frac{dT}{T} &= \sum_{n=1}^N\frac{\partial T}{\partial x_n}\frac{x_n}{T}\cdot \frac{dx_n}{x_n} \\ &= \sum_{n=1}^N S_{x_n}^T \cdot \frac{dx_n}{x_n} \end{align}\]
⭐ where \(S_{x_n}^T=\frac{\partial T}{\partial x_n}\frac{x_n}{T}\) is relative sensitivity
relative sensitivity connect \(\frac{dx_n}{x_n}\) with total relative variation \(\frac{dT}{T}\)
And \(dT\) can be expressed as \[ dT =\sum_{n=1}^N S_{x_n}^T T\cdot \frac{dx_n}{x_n} = \sum_{n=1}^N x_n'\cdot \frac{dx_n}{x_n} \] ⭐ where \(x_n'= S_{x_n}^T T\) is the contribution of \(x_n\) in \(T\)
⭐ For parallel or series resistors, it can prove \(\sum_{n=1}^N S_{x_n}^T = 1\) and $ _{n=1}^N x_n'=T$
Here \(T= R_1 \parallel R_2 = \frac{R_1R_2}{R_1+R_2}\), and \(T|_{R_1=8000, R_2=2000} = 1600\)
We obtain relative sensitivity: \[\begin{align} S_{R_1}^T & = \frac{R_2}{R_1+R_2} \\ S_{R_2}^T & = \frac{R_1}{R_1+R_2} \end{align}\]
The contribution of \(R_1\) and \(R_2\) to \(T\) \[\begin{align} R_1' &= S_{R_1}^T T | _{R_1=8000, R_2=2000} = 320 \\ R_2' &= S_{R_2}^T T | _{R_1=8000, R_2=2000} = 1280 \end{align}\]
scholar
Normalized sensitivity captures relative sensitivity
change in objective per change in design variable
reference
Olivier de Weck, Karen Willcox. MIT, Gradient Calculation and Sensitivity Analysis [pdf]
Karti Mayaram, ECE 521 Fall 2016 Analog Circuit Simulation, Sensitivity and noise analyses [https://web.engr.oregonstate.edu/~karti/ece521/lec16_11_09.pdf]