Second-Order System
overview
\(\omega_d\) called damped natural frequency
closed loop frequency response
\[\begin{align} A &= \frac{\frac{A_0}{(1+s/\omega_1)(1+s/\omega_2)}}{1+\beta \frac{A_0} {(1+s/\omega_1)(1+s/\omega_2)}} \\ &= \frac{A_0}{1+A_0 \beta}\frac{1}{\frac{s^2}{\omega_1\omega_2(1+A_0\beta)}+\frac{1/\omega_1+1/\omega_2}{1+A_0\beta}s+1} \\ &\simeq \frac{A_0}{1+A_0 \beta}\frac{1}{\frac{s^2}{\omega_u\omega_2}+\frac{1}{\omega_u}s+1} \\ &= \frac{A_0}{1+A_0 \beta}\frac{\omega_u\omega_2}{s^2+\omega_2s+\omega_u\omega_2} \end{align}\]
That is \(\omega_n = \sqrt{\omega_u\omega_2}\) and \(\zeta = \frac{1}{2}\sqrt{\frac{\omega_2}{\omega_u}}\)
where \(\omega_u\) is the unity gain bandwidth
where \(f_r\) is resonant frequency, \(\zeta\) is damping ratio, \(P_f\) maximum peaking, \(P_t\) is the peak of the first overshoot (step response)
damping factor & phase margin
phase margin is defined for open loop system
damping factor (\(\zeta\)) is defined for close loop system
The roughly 90 to 100 times of damping factor (\(\zeta\)) is phase margin \[ \mathrm{PM} = 90\zeta \sim 100\zeta \] In order to have a good stable system, we want \(\zeta > 0.5\) or phase margin more than \(45^o\)
We can analyze open loop system in a better perspective because it is simpler. So, we always use the loop gain analysis to find the phase margin and see whether the system is stable or not.
additional Zero
\[\begin{align} TF &= \frac{s +\omega_z}{s^2+2\zeta \omega_ns+\omega_n^2} \\ &= \frac{\omega _z}{\omega _n^2}\cdot \frac{1+s/\omega _z}{1+s^2/\omega_n^2+2\zeta s/\omega_n} \end{align}\]
Let \(s=j\omega\) and omit factor, \[ A_\text{dB}(\omega) = 10\log[1+(\frac{\omega}{\omega _z})^2] - 10\log[1+\frac{\omega^4}{\omega_n^4}+\frac{2\omega^2(2\zeta ^2 -1)}{\omega_n^2}] \] peaking frequency \(\omega_\text{peak}\) can be obtained via \(\frac{d A_\text{dB}(\omega)}{d\omega} = 0\) \[ \omega_\text{peak} = \omega_z \sqrt{\sqrt{(\frac{\omega_n}{\omega_z})^4 - 2(\frac{\omega_n}{\omega_z})^2(2\zeta ^2-1)+1} - 1} \]
Settling Time
single-pole
\[ \tau \simeq \frac{1}{\beta \omega_\text{ugb}} \]
two poles
Rise Time
Katsuhiko Ogata, Modern Control Engineering Fifth Edition
For underdamped second order systems, the 0% to 100% rise time is normally used
For \(\text{PM}=70^o\)
- \(\omega_2=3\omega_u\), that is \(\omega_n = 1.7\omega_u\).
- \(\zeta = 0.87\)
Then \[ t_r = \frac{3.1}{\omega_u} \]
Settling Time
Gene F. Franklin, Feedback Control of Dynamic Systems, 8th Edition
As we know \[ \zeta \omega_n=\frac{1}{2}\sqrt{\frac{\omega_2}{\omega_u}}\cdot \sqrt{\omega_u\omega_2}=\frac{1}{2}\omega_2 \]
Then \[ t_s = \frac{9.2}{\omega_2} \]
For \(\text{PM}=70^o\), \(\omega_2 = 3\omega_u\), that is \[ t_s \simeq \frac{3}{\omega_u} \space\space \text{, for PM}=70^o \]
For \(\text{PM}=45^o\), \(\omega_2 = \omega_u\), that is \[ t_s \simeq \frac{9.2}{\omega_u} \space\space \text{, for PM}=45^o \]
Above equation is valid only for underdamped, \(\zeta=\frac{1}{2}\sqrt{\frac{\omega_2}{\omega_u}}\lt 1\), that is \(\omega_2\lt 4\omega_u\)
2 Stage RC filter
high frequency pass
Since \(1/sC_1+R_1 \gg R_0\) \[ \frac{V_m}{V_i}(s) \simeq \frac{R_0}{R_0 + 1/sC_0} = \frac{sR_0C_0}{1+sR_0C_0} \] step response of \(V_m\) \[ V_m(t) = e^{-t/R_0C_0} \] where \(\tau = R_0C_0\)
And \(V_o(s)\) can be expressed as \[\begin{align} \frac{V_o}{V_i}(s) & \simeq \frac{sR_0C_0}{1+sR_0C_0} \cdot \frac{sR_1C_1}{1+sR_1C_1} \\ &= \frac{sR_0C_0R_1C_1}{R_0C_0-R_1C_1}\left(\frac{1}{1+sR_1C_1} - \frac{1}{1+sR_0C_0}\right) \end{align}\]
Then step response of \(Vo\) \[\begin{align} Vo(t) &= \frac{R_0C_0R_1C_1}{R_0C_0-R_1C_1} \left(\frac{1}{R_1C_1}e^{-t/R_1C_1} - \frac{1}{R_0C_0}e^{-t/R_0C_0}\right) \\ &= \frac{1}{R_0C_0-R_1C_1}\left(R_0C_0e^{-t/R_1C_1} - R_1C_1e^{-t/R_0C_0}\right) \\ &\approx \frac{1}{R_0C_0-R_1C_1}\left(R_0C_0e^{-t/R_1C_1} - R_1C_1\right) \end{align}\]
where \(\tau=R_1C_1\)
Partial-fraction Expansion
1 | syms C0 |
1 | >> partfrac(vm, s) |
\[\begin{align} V_m(s) &= 1 - \frac{s(C_1R_0+C_1R_1)+1}{C_0C_1R_0R_1s^2+(C_0R_0+C_1R_0+C_1R_1)s+1} \\ V_o(s) &= 1 - \frac{s(C_0R_0+C_1R_0+C_1R_1)+1}{C_0C_1R_0R_1s^2+(C_0R_0+C_1R_0+C_1R_1)s+1} \end{align}\]
1 | C0 = 200e-9; |
spectre simulation vs matlab
1 | C0 = 200e-9; |
1 | >> vm |
low frequency pass
\[ \left\{ \begin{array}{cl} \frac{V_i - V_m}{R_0} &= C_0\frac{dV_m}{dt} + C_1\frac{dV_o}{dt} \\ \frac{V_m - V_o}{R_1} &= C_1\frac{dV_o}{dt} \\ V_m(t=0) &= 1 \\ V_o(t=0) &= 0 \end{array} \right. \]
Take into initial condition account \[ \frac{dV_m}{dt} \overset{\mathcal{L}}{\longrightarrow} sV_M-V_{m0} \] where \(V_{m0} = 1\)
\[\begin{align} V_O(s) &= \frac{V_I}{s^2R_0C_0R_1C_1+s(R_0C_0+R_1C_1+R_0C_1)+1} + \frac{V_{m0}R_0C_0}{s^2R_0C_0R_1C_1+s(R_0C_0+R_1C_1+R_0C_1)+1} \\ &\approx \frac{V_I}{s^2R_0C_0R_1C_1+sR_0(C_0+C_1)+1} + \frac{V_{m0}R_0C_0}{s^2R_0C_0R_1C_1+sR_0(C_0+C_1)+1} \\ &= \frac{V_I}{R_0(C_0+C_1)}\left(\frac{R_0(C_0+C_1)}{sR_0(C_0+C_1)+1} - \frac{R_1\frac{C_0C_1}{C_0+C_1}}{sR_1\frac{C_0C_1}{C_0+C_1}+1}\right) \\ &+ \frac{C_0}{C_0+C_1}\left(\frac{R_0(C_0+C_1)}{sR_0(C_0+C_1)+1} - \frac{R_1\frac{C_0C_1}{C_0+C_1}}{sR_1\frac{C_0C_1}{C_0+C_1}+1}\right) \end{align}\]
with \(V_I = \frac{1}{s}\), using inverse Laplace transform \[\begin{align} V_o(t) &= 1 - \frac{C_1}{C_0+C_1}e^{-t/\tau_0}-\frac{C_0}{C_0+C_1}e^{-t/\tau_1} - \frac{R_1C_0C_1}{R_0(C_0+C_1)^2} \tag{Eq.0} \\ &= 1 - \frac{C_1}{C_0+C_1}e^{-t/\tau_0}-\frac{C_0}{C_0+C_1}e^{-t/\tau_1} \tag{Eq.1} \end{align}\]
where
\[\begin{align} \tau_0 &= R_0(C_0+C_1) \\ \tau_1 &= R_1C_1\cdot \frac{C_0}{C_0+C_1} \end{align}\]
and \(\tau_0 \gg \tau_1\)
1 | R0 = 100e3; |
reference
Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 2018. Feedback Control of Dynamic Systems (8th Edition) (8th. ed.). Pearson.
Katsuhiko Ogata, Modern Control Engineering, 5th edition