AM & PM

Phasor Diagram

image-20251105222421572

"I" is the in-phase or real axis and "Q" is the quadrature or imaginary axis

  • phasor rotating counter-clockwise represents the upper sideband (USB) \(e^{j(\omega_o+\omega_m )t} = e^{j\omega_o t}\color{red}e^{j\omega_m t}\)

  • phasor rotating clockwise represents the lower sideband (LSB) \(e^{j(\omega_o-\omega_m )t} = e^{j\omega_o t}\color{red}e^{-j\omega_m t}\)

AM modulation

image-20251105224322467 \[\begin{align} x(t)&= (1+2k\cos(\omega_m t)) \cos(\omega_0 t) \\ & = \cos(\omega_0 t) + 2k \cos(\omega_m t) \cos(\omega_0 t) \\ &=\mathcal{Re}\{e^{j\omega_0t}+k(e^{j\omega_0t}e^{j\omega_mt}+e^{j\omega_0t}e^{-j\omega_mt})\}\\ &=\mathcal{Re}\{e^{j\omega_0t}(\color{red}1+k(e^{j\omega_mt}+e^{-j\omega_mt})\color{black})\} \end{align}\]

image-20251105230141244

PM modulation with incidental AM

image-20251106215603538

image-20251106000733364


image-20251105225355996


A. A. Abidi and D. Murphy, "How to Design a Differential CMOS LC Oscillator," in IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 45-59, 2025, doi: 10.1109/OJSSCS.2024 [pdf]

image-20251011000448718

PSD of Narrowband FM Signal

Chembiyan T. Jitter and Phase Noise in Phase Locked Loops [link]

\[ y(t) = A\cos(2\pi f_0t+\phi_n(t)) \approx A \cos(2\pi f_0 t) - A \phi_n (t)\sin(2\pi f_0 t) \]

image-20241228020953646 \[ R_x(\tau) = \frac{A^2}{2}\cos(2\pi f_0\tau) + \frac{A^2}{2}R_\phi(\tau)\cos(2\pi f_0\tau) \] The PSD of the signal \(x(t)\) is given by \[ S_x(f) = \mathcal{F}\{R_x(\tau)\} = \frac{P_c}{2}\left[\delta(f+f_0)+\delta(f-f_0)\right]+\frac{P_c}{2}\left[S_\phi(f+f_0)+S_\phi(f-f_0)\right] \] where \(P_c = A^2/2\) is the carrier power of the signal

Amplitude Noise

Deog-Kyoon Jeong. Topics in IC Design: 1.1 Introduction to Jitter [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%201%20-%20Jitter%20and%20Phase%20Noise.pdf]

image-20250821202257578

with \(x(t) = A_0\sin (2\pi f_0 t +\phi _0)\), then \(y(t) = x(t) + n_v(t)\)

\[\begin{align} R_y(\tau) &= \mathrm{E}[y(t)y(t+\tau)] \\ &= \mathrm{E}[x(t)x(t+\tau)] + \mathrm{E}[x(t)]\mathrm{E}[n_v(t+\tau)] + \mathrm{E}[x(t+\tau)]\mathrm{E}[n_v(t)] + \mathrm{E}[n_v(t)n_v(t+\tau)]\\ &= \mathrm{E}[x(t)x(t+\tau)] + \mathrm{E}[n_v(t)n_v(t+\tau)] \\ &= R_x(\tau) + R_{n_v}(\tau) \end{align}\]

AM & PM Sidebands

image-20241012001704081

The spectrum of the narrowband FM signal is very similar to that of an amplitude modulation (AM) signal but has the phase reversal for the other sideband component

Assume the modulation frequency of PM and AM are same, \(\omega_m\)

\[\begin{align} x(t) &= (1+A_m\cos{\omega_m t})\cos(\omega_0 t + P_m \sin\omega_m t) \\ &= \cos(\omega_0 t + P_m \sin\omega_m t) + A_m\cos{\omega_m t}\cos(\omega_0 t + P_m \sin\omega_m t) \\ &= X_{pm}(t) + X_{apm}(t) \end{align}\]

\(X_{pm}(t)\), PM Only \[ X_{pm}(t) = \cos\omega_0 t - \frac{P_m}{2}\cos(\omega_0 - \omega_m)t + \frac{P_m}{2}\cos(\omega_0 + \omega_m)t \] \(X_{apm}(t)\), AM & PM \[\begin{align} X_{apm}(t) &= A_m \cos{\omega_m t} (\cos\omega_0 t-P_m\sin\omega_m t\sin\omega_0 t) \\ &= \frac{A_m}{2}[\cos(\omega_0 + \omega_m)t + \cos(\omega_0 -\omega_m)t] - \frac{A_mP_m}{2}\sin(2\omega_m t)\sin(\omega_0 t) \\ &= \frac{A_m}{2}\cos(\omega_0 + \omega_m)t + \frac{A_m}{2}\cos(\omega_0 -\omega_m)t - \frac{A_mP_m}{4}\cos(\omega_0 - 2\omega_m)t + \frac{A_mP_m}{4}\cos(\omega_0 + 2\omega_m)t \end{align}\]

That is \[\begin{align} x(t) &= \cos\omega_0 t + \frac{A_m-P_m}{2}\cos(\omega_0 - \omega_m)t + \frac{A_m+P_m}{2}\cos(\omega_0 + \omega_m)t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space - \frac{A_mP_m}{4}\cos(\omega_0 - 2\omega_m)t + \frac{A_mP_m}{4}\cos(\omega_0 + 2\omega_m)t \end{align}\]

For general case, \(x(t) = (1+A_m\cos{\omega_{am} t})\cos(\omega_0 t + P_m \sin\omega_{pm} t)\), i.e., PM is \(\omega_{pm}\), AM is \(\omega_{am}\)

\[\begin{align} x(t) &= \cos\omega_0 t - \frac{P_m}{2}\cos(\omega_0 - \omega_{pm})t + \frac{P_m}{2}\cos(\omega_0 + \omega_{pm})t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space + \frac{A_m}{2}\cos(\omega_0 - \omega_{am})t + \frac{A_m}{2}\cos(\omega_0 + \omega_{am})t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space - \frac{A_mP_m}{4}\cos(\omega_0 - \omega_{pm}-\omega_{am})t + \frac{A_mP_m}{4}\cos(\omega_0 + \omega_{pm}+\omega_{am})t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space + \frac{A_mP_m}{4}\cos(\omega_0 + \omega_{pm}-\omega_{am})t - \frac{A_mP_m}{4}\cos(\omega_0 - \omega_{pm}+\omega_{am})t \end{align}\]

Therefore, sideband is asymmetric if \(\omega_{pm} = \omega_{am}\) same


Emad Hegazi , Jacob Rael , Asad Abidi, 2005. The Designer's Guide to High-Purity Oscillators [https://picture.iczhiku.com/resource/eetop/whkgGLPAHoORYxbC.pdf]

image-20251105231301581

PM & FM

Dan Boschen What is the difference between phase noise and frequency noise? [https://dsp.stackexchange.com/a/38230/59253]

Phase Noise and Frequency Noise are not two different noise sources, they are artifacts of the same noise, it is just a matter of what units you want to use

image-20251106205014601


image-20251106001007275

Equipartition theorem

[https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-VCO-short.pdf]

Enrico Rubiola. The Measurement of AM-PM Noise, and the Origin of Noise in Oscillators [https://rubiola.org/pdf-slides/2010T-ANL-Noise-and-oscillators.pdf]

image-20251106214759580

image-20251104233701576

Stationary noise can also be decomposed into AM and PM components, but there will always be equal amounts of both.

timeaverage Pnoise simulation result

Ken Kundert. Re: Question about phase noise simulation result [https://designers-guide.org/forum/YaBB.pl?num=1309258199/15#15]

Spectre Circuit Simulator RF Analysis Theory — Measuring AM, PM and FM Conversion

image-20251104004721935


noise profile sidebands contribution
stationary uncorrelated \(S_{AM} = S_{PM}\)
cyclostationary correlated \(S_{AM} \gt S_{PM}\) or \(S_{AM} \lt S_{PM}\)

sine wave + white noise

image-20251111231609124

equal amounts of AM and PM noise in both USB and LSB

sine wave + AM

image-20251112002405912

image-20251104010641470


肥肥牛是只虎. PSS+Pnoise仿真:基本设置 [https://mp.weixin.qq.com/s/etyQ2UkfisPkvbc44XFw4w]

image-20251104004017859


image-20251104010500397

Single Sideband Modulation (SSB)

image-20251104003558243

image-20251104003840236

Asymmetrical Linear System

Golara, S. (2015). Identifying Mechanisms of AM-PM Distortion in Large Signal Amplifiers. UCLA [https://escholarship.org/uc/item/4jp786z8]

image-20251010234110656


Bob Nelson. Phase Noise 101: Basics, Applications and Measurements [[https://www.qsl.net/ab4oj/test/docs/20180720_KEE7_PhaseNoise.pdf])https://www.qsl.net/ab4oj/test/docs/20180720_KEE7_PhaseNoise.pdf]

image-20251104003200956

AN-PN Conversion

G. Giust, Influence of Noise Processes on Jitter and Phase Noise Measurements [https://www.signalintegrityjournal.com/articles/800-influence-of-noise-processes-on-jitter-and-phase-noise-measurements]

—. "Methodologies for PCIe5 Refclk Jitter Analysis,", PCI-SIG Electrical Workgroup Meeting (Jan. 19, 2018)

—. How to Identify the Source of Phase Jitter through Phase Noise Plots [https://www.sitime.com/company/newsroom/blog/how-identify-source-phase-jitter-through-phase-noise-plots]

AN10072 Determine the Dominant Source of Phase Noise, by Inspection [https://www.sitime.com/support/resource-library/application-notes/an10072-determine-dominant-source-phase-noise-inspection]

  • AM alone doesn't introduce jitter (e.g., doesn't change zero-crossings) nor impact phase

  • AM changes slew rate, and so influences the conversion of amplitude noise to jitter when amplitude noise (BB) is present

image-20250719122931298

Figure 8 thumb_rev

additive & parametric noise

Enrico Rubiola. The Measurement of AM-PM Noise, and the Origin of Noise in Oscillators [https://rubiola.org/pdf-slides/2010T-ANL-Noise-and-oscillators.pdf]

—, February 7, 2025. Phase Noise - Art, Science and Experimental Methods [https://rubiola.org/pdf-lectures/Scient-Instrum-Files/!-Phase-noise.pdf]

image-20251110234817907

image-20251110233928508

image-20251104010027135

image-20251105002402811

image-20251104010925436

image-20251105231715117

Phase Noise Measurement

Phase Noise Measurement Solutions [https://www.keysight.com/vn/en/assets/7018-02528/technical-overviews/5990-5729.pdf]

Greg Bonaguide. Advances in Phase Noise Measurement Techniques [https://ieee.li/pdf/viewgraphs/advances_in_phase_noise_measurement_techniques.pdf]

The three most widely adopted techniques are direct spectrum, phase detector, and two-channel cross-correlation.

While the direct spectrum technique measures phase noise with the existence of the carrier signal, the other two remove the carrier (demodulation) before phase noise is measured.

Though direct spectrum technique method may not be useful for measuring very close-in phase noise to a drifting carrier, it is convenient for qualitative quick evaluation on sources with relatively high noise

image-20251105003812138

1
2
3
4
5
6
7
8
9
import numpy as np

# at 5KHz
n_pm = -140 # dBc
n_am = -142 # dBc

# calculate the total noise by PM + AM
n_tot = 10*np.log10(10**(n_pm / 10) + 10**(n_am / 10))
print(n_tot) # -137.8755739720566

image-20251105233926270

Modulation index in Virtuoso

image-20251111225036664

reference

Ken Kundert, Measuring AM, PM & FM Conversion with SpectreRF [https://designers-guide.org/analysis/am-pm-conv.pdf]


Dan Boschen. Creating uneven sidebands with AM + PM modulation? [https://dsp.stackexchange.com/a/61670/59253]

—. Creating uneven sidebands with AM + PM modulation? [https://dsp.stackexchange.com/a/61670/59253]

—. Qualitative Explanation of Fourier Transform [https://dsp.stackexchange.com/a/78911/59253]

Timing 201 #1: The Case of the Phase Noise That Wasn't - Part 1 [https://community.silabs.com/s/share/a5U1M000000knpiUAA/timing-201-1-the-case-of-the-phase-noise-that-wasnt-part-1?]


Noise in mixers, oscillators, samplers, and logic: an introduction to cyclostationary noise [https://designers-guide.org/theory/cyclo-preso.pdf], [https://designers-guide.org/theory/cyclo-paper.pdf]