Data Converter

Top-Plate vs Bottom-Plate Sampling

[https://class.ece.iastate.edu/ee435/lectures/EE%20435%20Lect%2044%20Spring%202008.pdf]

Bottom-Plate Sampling

Sample signal at the "grounded" side of the capacitor to achieve signal independent sampling

image-20240825231816582

image-20240825232007848

image-20240825232717342

image-20240825233801855

image-20240825233821389


image-20240825233859540

[https://indico.cern.ch/event/1064521/contributions/4475393/attachments/2355793/4078773/esi_sampling_and_converters2022.pdf]

EE 435 Spring 2024 Analog VLSI Circuit Design - Switched-Capacitor Amplifiers Other Integrated Filters, https://class.ece.iastate.edu/ee435/lectures/EE%20435%20Lect%2044%20Spring%202008.pdf

Top-Plate Sampling

TODO πŸ“…

image-20250622235355760

Maintain constant common-mode during conversion

D. Pfaff et al., "7.3 A 224Gb/s 3pJ/b 40dB Insertion Loss Transceiver in 3nm FinFET CMOS," 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2024 [https://iccircle.com/static/upload/img20240529101747.pdf]

β€”, "A 224Gb/s 3pJ/bit 42dB Insertion Loss Post-FEC Error Free Transceiver in 3-nm FinFET CMOS (Invited)," 2025 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 2025, pp. 1-8, doi: 10.1109/CICC63670.2025.10983461.

E. Swindlehurst et al., "An 8-bit 10-GHz 21-mW Time-Interleaved SAR ADC With Grouped DAC Capacitors and Dual-Path Bootstrapped Switch," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2347-2359, 2021, [https://sci-hub.se/10.1109/JSSC.2021.3057372]

Relationship Between SFDR and INL

image-20250524172307785

Beware, this is of course only true under the same conditions at which the INL was taken, i.e. typically low input signal frequency

Track Time

TODO πŸ“…

ADC Calibration

Offset Calibration

long-term average of all 32 sub-ADC samples = 0

Gain Calibration

long-term average of absolute values of all 32 sub-ADC samples should be equal

Background vs. foreground calibration

TODO πŸ“…

Ahmed Ali, ISSCC 2021 T5: Calibration Techniques in ADCs [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T5.pdf]

Jiang, Xicheng, ed. Digitally-Assisted Analog and Analog-Assisted Digital IC Design. Cambridge: Cambridge University Press, 2015.

Redundancy

image-20241221140840026

Max tolerance of comparator offset is \(\pm V_{FS}/4\)

  1. \(b_j\) error is \(\pm 1\)
  2. \(b_{j+1}\) error is \(\pm 2\) , wherein \(b_{j+1}\): \(0\to 2\) or \(1\to -1\)

i.e. complementary analog and digital errors cancel each other, \(V_o +\Delta V_{o}\) should be in over-/under-range comparators (\(-V_{FS}/2 \sim 3V_{FS}/2\))

\[\begin{align} V_{in,j} &= (b_j + \Delta b_j)\cdot \frac{V_{FS}}{2} + \frac{V_{out,j}+\Delta V_{out,j}}{2} \\ V_{in,{j+1}} &= (b_{j+1} + \Delta b_{j+1})\cdot \frac{V_{FS}}{2} + \frac{V_{out,j+1}+\Delta V_{out,j+1}}{2} \end{align}\]

with \(V_{in,j+1} = V_{out,j}+\Delta V_{out,j}\)

\[\begin{align} V_{in,j} &= (b_j + \Delta b_j)\cdot \frac{V_{FS}}{2} + \frac{1}{2} \left\{ (b_{j+1} + \Delta b_{j+1})\cdot \frac{V_{FS}}{2} + \frac{V_{out,j+1}+\Delta V_{out,j+1}}{2} \right\} \\ &= (b_j + \Delta b_j)\cdot \frac{V_{FS}}{2} + \frac{1}{2}(b_{j+1} + \Delta b_{j+1})\cdot \frac{V_{FS}}{2}+ \frac{1}{2}\frac{V_{in,j+2}}{2} \\ &=\tilde{b_j} \cdot \frac{V_{FS}}{2}+ \tilde{b_{j+1}}\cdot \frac{V_{FS}}{4}+ \frac{1}{4}V_{in,j+2} \end{align}\]

where \(b_j\) is 1-bit residue without redundancy and \(\tilde{b_j}\) is redundant bits

image-20241222115022613


Uniform Sub-Radix-2 SAR ADC

image-20241222130625469

Minimal analog complexity, no additional decoding effort

Chang, Albert Hsu Ting. "Low-power high-performance SAR ADC with redundancy and digital background calibration." (2013). [https://dspace.mit.edu/bitstream/handle/1721.1/82177/861702792-MIT.pdf]

Kuttner, Franz. "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS." 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315) 1 (2002): 176-177 vol.1. [https://sci-hub.se/10.1109/ISSCC.2002.992993]

T. Ogawa, H. Kobayashi, et. al., "SAR ADC Algorithm with Redundancy and Digital Error Correction." IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A (2010): 415-423. [paper, slides]

B. Murmann, β€œOn the use of redundancy in successive approximation A/D converters,” International Conference on Sampling Theory and Applications (SampTA), Bremen, Germany, July 2013. [https://www.eurasip.org/Proceedings/Ext/SampTA2013/papers/p556-murmann.pdf]

Krämer, M. et al. (2015) High-resolution SAR A/D converters with loop-embedded input buffer. dissertation. Available at: [http://purl.stanford.edu/fc450zc8031].

sarthak, "Visualising redundancy in a 1.5 bit pipeline ADCβ€œ [https://electronics.stackexchange.com/a/523489/233816]

Testing

TODO πŸ“…

Kent H. Lundberg "Analog-to-Digital Converter Testing" [https://www.mit.edu/~klund/A2Dtesting.pdf]

Tai-Haur Kuo, Da-Huei Lee "Analog IC Design: ADC Measurement" [http://msic.ee.ncku.edu.tw/course/aic/202309/ch13%20(20230111).pdf] [http://msic.ee.ncku.edu.tw/course/aic/aic.html]

ESE 6680: Mixed Signal Design and Modeling "Lec 20: April 10, 2023 Data Converter Testing" [https://www.seas.upenn.edu/~ese6680/spring2023/handouts/lec20.pdf]

Degang Chen. "Distortion Analysis" [https://class.ece.iastate.edu/djchen/ee435/2017/Lecture25.pdf]

ADC INL/DNL

TODO πŸ“…

  • Endpoint method
  • BestFit method

image-20241006211529077

image-20241006195931838

INL/DNL Measurements for High-Speed Analog-to Digital Converters (ADCs) [https://picture.iczhiku.com/resource/eetop/sYKTSqLfukeHSmMB.pdf]

Code Density Test

Apply a linear ramp to ADC input

image-20241214100849243

Mid-Rise & Mid-Tread Quantizer

image-20241124225350563

image-20241124230219164

The difference between the lowest and highest levels is called the full-scale (FS) of the quantizer

Bootstrapped Switch

image-20240825222432796

A. Abo et al., "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to Digital Converter," IEEE J. Solid-State Circuits, pp. 599, May 1999 [https://sci-hub.se/10.1109/4.760369]

Dessouky and Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched opamp circuits," Electronics Letters, Jan. 1999. [https://sci-hub.se/10.1049/EL:19990028]

B. Razavi, "The Bootstrapped Switch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12-15, Summer 2015 [https://www.seas.ucla.edu/brweb/papers/Journals/BRSummer15Switch.pdf]

B. Razavi, "The Design of a bootstrapped Sampling Circuit [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 13, Issue. 1, pp. 7-12, Summer 2021. [http://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_1_2021.pdf]

image-20241108210222043

Quantization Noise & its Spectrum

image-20240825221754959

Quantization noise is less with higher resolution as the input range is divided into a greater number of smaller ranges

This error can be considered a quantization noise with RMS

image-20240925235213137

ENOB & SQNR

The quantization noise power \(P_Q\) for a uniform quantizer with step size \(\Delta\) is given by \[ P_Q = \frac{\Delta ^2}{12} \] For a full-scale sinusoidal input signal with an amplitude equal to \(V_{FS}/2\), the input signal is given by \(x(t) = \frac{V_{FS}}{2}\sin(\omega t)\)

Then input signal power \(P_s\) is \[ P_s = \frac{V_{FS}^2}{8} \] Therefore, the signal-to-quantization noise ratio (SQNR) is given by \[ \text{SQNR} = \frac{P_s}{P_Q} = \frac{V_{FS}^2/8}{\Delta^2/12}=\frac{V_{FS}^2/8}{V_{FS}^2/(12\times 2^{2N})} = \frac{3\times 2^{2N}}{2} \] where \(N\) is the number of quantization bits

When represented in dBs \[ \text{SQNR(dB)} = 10\log(\frac{P_s}{P_Q}) = 10\log(\frac{3\times 2^{2N}}{2})= 20N\log(2) + 10\log(\frac{3}{2})= 6.02N + 1.76 \]


image-20250705100706289

image-20250705101619687

image-20250705101635533

Quantization is NOT Noise

image-20241006152621688

DAC DNL

One difference between ADC and DAC is that DAC DNL can be less than -1 LSB

In a DAC, DNL < -1LSB implies non-monotonicity

image-20241006215420568

DAC INL

image-20241215101400962

The worst INL of three DAC Architecture is same

image-20241215110708021

  • \(A = \sum_{j=1}^k I_j\), \(B=\sum_{j=k+1}^N I_j\)
  • A and B are independent with \(\sigma_A^2 = k\sigma_u^2\) and \(\sigma_B^2=(N-k)\sigma_u^2\)

Therefore \[ \mathrm{Var}\left(\frac{X}{Y}\right)\simeq \frac{k^2}{N^2}\left(\frac{\sigma_i^2}{kI_u^2} + \frac{\sigma_i^2}{NI_u^2} -2\frac{\mathrm{cov}(X,Y)}{kNI_u^2}\right) \] and \[\begin{align} \mathrm{cov}(X,Y) &= E[XY] - E[X]E[Y] = E[A(A+B)] - kNI_u^2 \\ &= E[A^2]+E[A]E[B] - kNI_u^2= \sigma_A^2+E[A]^2 + k(N-k)I_u^2 - kNI_u^2\\ &= k\sigma_i^2 + k^2I_u^2+ k(N-k)I_u^2 - kNI_u^2 \\ &= k\sigma_i^2 \end{align}\]

Finally, \[ \mathrm{Var}\left(\frac{X}{Y}\right)\simeq \frac{k^2}{N^2}\left(\frac{\sigma_i^2}{kI_u^2} + \frac{\sigma_i^2}{NI_u^2} -2\frac{k\sigma_i^2}{kNI_u^2}\right) = \frac{k^2}{N^2}\left(\frac{1}{k}- \frac{1}{N}\right)\sigma_u^2 \] i.e. \[ \mathrm{Var(INL(k))} = k^2\left(\frac{1}{k}- \frac{1}{N}\right)\sigma_u^2 = k\left(1- \frac{k}{N}\right)\sigma_u^2 \]

Standard deviation of INL is maximum at mid-scale (k=N/2)

image-20241215114755896


image-20241215101727644

Hold Mode Feedthrough

image-20240820204720277

image-20240820204959977

P. Schvan et al., "A 24GS/s 6b ADC in 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2008, pp. 544-634

B. Sedighi, A. T. Huynh and E. Skafidas, "A CMOS track-and-hold circuit with beyond 30 GHz input bandwidth," 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Seville, Spain, 2012, pp. 113-116

Tania Khanna, ESE 568: Mixed Signal Circuit Design and Modeling [https://www.seas.upenn.edu/~ese5680/fall2019/handouts/lec11.pdf]

Summing Interleaved Alias

image-20240929215841300

The sampling function - impulse train is \[ s(t) = \sum_{n=-\infty}^{\infty}\left[ \delta(t-n4T_s) + \delta(t-n4T_s-T_s) + \delta(t-n4T_s-2T_s) + \delta(t-n4T_s-3T_s)\right] \]

Its Fourier transform is \[\begin{align} S(f) &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left[\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 2T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 3T_s}\delta(f-k\frac{f_s}{4}) \right] \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-j2\pi\frac{f}{f_s}} + e^{-j4\pi\frac{f}{f_s}} + e^{-j6\pi\frac{f}{f_s}} \right) \delta(f-k\frac{f_s}{4}) \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}} \right) \delta(f-k\frac{f_s}{4}) \end{align}\]

We define \(M[k] = 1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}}\), which is periodic, i.e. \(M[k]=M[k+4]\) \[ M[k]=\left\{ \begin{array}{cl} 4 & : \ k = 4m \\ 0 & : \ k=4m+1 \\ 0 & : \ k=4m+2 \\ 0 & : \ k=4m+3 \\ \end{array} \right. \]

That is \[ S(f) = \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta(f-kf_s) \]

Alias has same frequency for each slice but different phase: Alias terms sum to zero if all slices match exactly

John P. Keane, ISSCC2020, T5: "Fundamentals of Time-Interleaved ADCs"

Random Chopping in TI-ADC

image-20240929215927957

\[ D_n(kT) = (G_n R(kT) V(kT) + O_n)R(kT)= C_n V(kT) + R(kT)O_n \]

Coherent Sampling

image-20250705085139758


\[ \frac{f_{\text{in}}}{f_{\text{s}}}=\frac{M_C}{N_R} \]

  • \(f_\text{in}\) and \(f_s\) must be incommensurate (\(f_s/f_{in}\) is irrational number. btw, co-prime is sufficient but not necessary)

  • \(M_C\) and \(N_R\) must be co-prime

  • Samples must include integer # of cycles of input signal


An irreducible ratio ensures identical code sequences not to be repeated multiple times.

Given that \(\frac{M_C}{N_R}\) is irreducible, and \(N_R\) is a power of 2, an odd number for \(M_C\) will always produce an irreducible ratio

Assuming there is a common factor \(k\) between \(M_C\) and \(N_R\), i.e. \(\frac{M_C}{N_R}=\frac{k M_C'}{k N_R'}\)

The samples (\(n\in[1, N_R]\))

\[ y[n] = \sin\left( \omega_{\text{in}} \cdot t_n \right) = \sin\left( \omega_{\text{in}} \cdot n\frac{1}{f_s} \right) = \sin\left( \omega_{\text{in}} \cdot n\frac{1}{f_{\text{in}}}\frac{M_C}{N_R} \right) = \sin\left( 2\pi n\frac{M_C}{N_R} \right) \]

Then

\[ y[n+N_R'] = \sin\left( 2\pi (n+N_R')\frac{M_C}{N_R} \right) = \sin\left( 2\pi n \frac{M_C}{N_R} + 2\pi N_R'\frac{M_C}{N_R}\right) = \sin\left( 2\pi n \frac{M_C}{N_R} + 2\pi N_R'\frac{kM_C'}{kN_R'} \right) = \sin\left( 2\pi n \frac{M_C}{N_R}\right) \]

So, the samples is repeated \(y[n] = y[n+N_R']\)


\(N_R\) & \(M_C\) irreducible ratio (mutually prime)

  • Periodic sampling points result in periodic quantization errors
  • Periodic quantization errors result in harmonic distortion

image-20250705091742434

Choosing M/N non-prime repeats the signal quantization periodically and fewer quantization steps are measured. The quantization repeats periodically and creates a line spectrum that can obscure real frequency lines (e.g. the red lines in the images below, created by non-linearities of the ADC).

[https://www.dsprelated.com/thread/469/coherent-sampling-very-brief-and-simple]


image-20250705092503925


image-20250705103213974

Thermometer to Binary encoder

image-20241214152349217

Pipeline ADC

image-20241006174924686

CMP reference voltage is 0.5vref, DAC output is 0.5vref or 0

pipelineADC.drawio

residual error \[ V_{r,n} = (V_{r,n-1}-\frac{1}{2}b_{n})\cdot 2 \] and \(V_{r,-1}=V_i\) \[ V_{r,n-1} = 2^{n}V_i -\sum_{k=0}^{n-1}2^{n-k-1}b_k = 2^{n}\left(V_i - \sum_{k=0}^{n-1}\frac{b_k}{2^{k+1}}\right) \]

here, \(b_0\) is first stage and MSB

It divides the process into several comparison stages, the number of which is proportional to the number of bits

Due to the pipeline structure of both analog and digital signal path, inter-stage residue amplification is needed which consumes considerable power and limits high speed operation

Vishal Saxena, "Pipelined ADC Design - A Tutorial"[https://www.eecis.udel.edu/~vsaxena/courses/ece517/s17/Lecture%20Notes/Pipelined%20ADC%20NonIdealities%20Slides%20v1_0.pdf] [https://www.eecis.udel.edu/~vsaxena/courses/ece517/s17/Lecture%20Notes/Pipelined%20ADC%20Slides%20v1_2.pdf]

Bibhu Datta Sahoo, Analog-to-Digital Converter Design From System Architecture to Transistor-level [http://smdpc2sd.gov.in/downloads/IGF/IGF%201/Analog%20to%20Digital%20Converter%20Design.pdf]

Bibhu Datta Sahoo, Associate Professor, IIT, Kharagpur, [https://youtu.be/HiIWEBAYRJY?si=pjQnIdi03i5N7805]


image-20241214164740706

R-2R & C-2C

TODO πŸ“…

Conceptually, area goes up linearly with number of bit slices

drawback of the R-2R DAC


\(N_b\) bit binary + \(N_t\) bit thermometer DAC

R-2R.drawio

\(N_b\) bit binary can be simplified with Thevenin Equivalent \[ V_B = \sum_{n=0}^{N_b-1} \frac{B_n}{2^{N_b-n}} \] with thermometer code

\[\begin{align} V_o &= V_B\frac{\frac{2R}{2^{N_t}-1}}{\frac{2R}{2^{N_t}-1}+ 2R}+\sum_{n=0}^{2^{N_t}-2}T_n\frac{\frac{2R}{2^{N_t}-1}}{\frac{2R}{2^{N_t}-1}+ 2R} \\ &= \frac{V_B}{2^{N_t}} + \frac{\sum_{n=0}^{2^{N_t}-2}T_n}{2^{N_t}} \\ &= \sum_{n=0}^{N_b-1} \frac{B_n}{2^{N_t+N_b-n}} + \frac{\sum_{n=0}^{2^{N_t}-2}T_n}{2^{N_t}} \end{align}\]

B. Razavi, "The R-2R and C-2C Ladders [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 10-15, Summer 2019 [https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_3_2019.pdf]


4bit binary R2R DAC with Ru=1kOhm

RVB equivalent R

image-20241214190045688

Binary-Weighted (BW) DAC

image-20241215094852761

During \(\Phi_1\), all capacitor are shorted, the net charge at \(V_x\) is 0

During \(\Phi_2\), the charge at bottom plate of CDAC \[ Q_{DAC,btm} = \sum_{i=0}^{N-1}(b_i\cdot V_R - V_x)\cdot 2^{i}C_u = C_uV_R\sum_{i=0}^{N-1}b_i2^i - (2^N-1)C_uV_x \] the charge at the internal plate of integrator \[ Q_{intg} = V_x C_p + (V_x - V_o)2^NC_u \] and we know \(-V_x A = V_o\) and \(Q_{DAC,btm} = Q_{intg}\) \[ C_uV_R\sum_{i=0}^{N-1}b_i2^i - (2^N-1)C_uV_x = V_x C_p + (V_x - V_o)2^NC_u \] i.e. \[ C_uV_R\sum_{i=0}^{N-1}b_i2^i = (2^N-1)C_uV_x + V_x C_p + (V_x - V_o)2^NC_u \] therefore \[ -V_o = \frac{2^N C_u}{\frac{(2^{N+1}-1)C_u+C_p}{A}+2^NC_u}\sum_{i=0}^{N-1}b_i\left(2^i\frac{V_R}{2^N}\right)\approx \sum_{i=0}^{N-1}b_i\left(2^i\frac{V_R}{2^N}\right) \]


Midscale (MSB Transition) often is the largest DNL error

image-20241215090447383

\(C_4\) and \(C_1+C_2+C_3\) are independent (can't cancel out) and their variance is two largest (\(16\sigma_u^2\), \(15\sigma_u^2\), ), the total standard deviation is \(\sqrt{16\sigma_u^2+15\sigma_u^2}=\sqrt{31}\sigma_u\)

reference

Aaron Buchwald, ISSCC2010 T1: "Specifying & Testing ADCs" [https://www.nishanchettri.com/isscc-slides/2010%20ISSCC/Tutorials/T1.pdf]

Ahmed M. A. Ali. CICC 2018: High Speed Pipelined ADCs: Fundamentals and Variants [https://picture.iczhiku.com/resource/eetop/SyIGzGRYsHFehcnX.pdf]

John P. Keane, ISSCC2020 T5: "Fundamentals of Time-Interleaved ADCs" [https://www.nishanchettri.com/isscc-slides/2020%20ISSCC/TUTORIALS/T5Visuals.pdf]

Yun Chiu, ISSCC2023 T3: "Fundamentals of Data Converters" [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T3.pdf]

β€”οΌŒ "Design and Calibration Techniques for SAR and Pipeline ADCs" [http://formation-old.in2p3.fr/microelectronique15/IN2P3_ADC.pdf]

β€”οΌŒ Radiation-Tolerant SAR ADC Architecture and Digital Calibration Techniques [https://indico.cern.ch/event/385097/attachments/768706/1054353/CERN_May15.pdf]

β€”οΌŒ Recent Advances in Multistep Nyquist ADC's [https://www.eecis.udel.edu/~vsaxena/courses/ece614/Handouts/Recent%20Advances%20in%20Nyquist%20rate%20ADCs.pdf]

Boris Murmann, ISSCC2022 SC1: Introduction to ADCs/DACs: Metrics, Topologies, Trade Space, and Applications [link]

Aaron Buchwald, ISSCC 2008 T2 Pipelined A/D Converters: The Basics [pdf]

Yohan Frans, CICC2019 ES3-3- "ADC-based Wireline Transceivers" [pdf]

Samuel Palermo, ISSCC 2018 T10: ADC-Based Serial Links: Design and Analysis [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T10/T10Visuals.pdf]

Ahmed M. A. Ali. ISSCC2021 T5: Calibration Techniques in ADCs [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T5.pdf]

Jan Mulder Broadcom. ISSCC2015 T5: High-Speed Current-Steering DACs [https://www.nishanchettri.com/isscc-slides/2015%20ISSCC/TUTORIALS/ISSCC2015Visuals-T5.pdf]

Ahmed M. A. Ali 2016, "High Speed Data Converters" [pdf]


M. Gu, Y. Tao, Y. Zhong, L. Jie and N. Sun, "Timing-Skew Calibration Techniques in Time-Interleaved ADCs," in IEEE Open Journal of the Solid-State Circuits Society [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804623]

everynanocounts. Memos on FFT With Windowing. URL: https://a2d2ic.wordpress.com/2018/02/01/memos-on-fft-with-windowing/

How to choose FFT depth for ADC performance analysis (SINAD, ENOB). URL:https://dsp.stackexchange.com/a/38201

Computation of Effective Number of Bits, Signal to Noise Ratio, & Signal to Noise & Distortion Ratio Using FFT. URL:https://cdn.teledynelecroy.com/files/appnotes/computation_of_effective_no_bits.pdf

Kester, Walt. (2009). Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor. URL:https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf

T. C. Hofner: Dynamic ADC testing part I. Defining and testing dynamic ADC parameters, Microwaves & RF, 2000, vol. 39, no. 11, pp. 75-84,162

T. C. Hofner: Dynamic ADC testing part 2. Measuring and evaluating dynamic line parameters, Microwaves & RF, 2000, vol. 39, no. 13, pp. 78-94

AN9675: A Tutorial in Coherent and Windowed Sampling with A/D Converters https://www.renesas.com/us/en/document/apn/an9675-tutorial-coherent-and-windowed-sampling-ad-converters

APPLICATION NOTE 3190: Coherent Sampling Calculator (CSC) https://www.stg-maximintegrated.com/en/design/technical-documents/app-notes/3/3190.html

Coherent Sampling (Very Brief and Simple) https://www.dsprelated.com/thread/469/coherent-sampling-very-brief-and-simple

Signal Chain Basics #160: Making sense of coherent and noncoherent sampling in data-converter testing https://www.planetanalog.com/signal-chain-basics-160-making-sense-of-coherent-and-noncoherent-sampling-in-data-converter-testing/

Signal Chain Basics #104: Understanding noise in ADCs https://www.planetanalog.com/signal-chain-basics-part-104-understanding-noise-in-adcs/

Signal Chain Basics #101: ENOB Degradation Analysis Over Frequency Due to Jitter https://www.planetanalog.com/signal-chain-basics-part-101-enob-degradation-analysis-over-frequency-due-to-jitter/

Clock jitter analyzed in the time domain, Part 1, Texas Instruments Analog Applications Journal (slyt379), Aug 2010 https://www.ti.com/lit/an/slyt379/slyt379.pdf

Clock jitter analyzed in the time domain, Part 2 https://www.ti.com/lit/slyt389

Measurement of Total Harmonic Distortion and Its Related Parameters using Multi-Instrument [pdf]

Application Note AN-4: Understanding Data Converters' Frequency Domain Specifications [pdf]

Belleman, J. (2008). From analog to digital. 10.5170/CERN-2008-003.131. [pdf]

HandWiki. Coherent sampling [link]

Luis Chioye, TI. Leverage coherent sampling and FFT windows when evaluating SAR ADCs (Part 1) [link]

Coherent Sampling vs. Window Sampling | Analog Devices https://www.analog.com/en/technical-articles/coherent-sampling-vs-window-sampling.html

Understanding Effective Number of Bits https://robustcircuitdesign.com/signal-chain-explorer/understanding-effective-number-of-bits/

ADC Input Noise: The Good, The Bad, and The Ugly. Is No Noise Good Noise? [https://www.analog.com/en/resources/analog-dialogue/articles/adc-input-noise.html]

Walt Kester, Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care [https://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf]

Dan Boschen, "How to choose FFT depth for ADC performance analysis (SINAD, ENOB)", [https://dsp.stackexchange.com/a/38201]

B. Razavi, "A Tale of Two ADCs - Pipelined Versus SAR" IEEE Solid-State Circuits Magazine, Volume. 7, Issue. 30, pp. 38-46, Summer 2015 [https://www.seas.ucla.edu/brweb/papers/Journals/BRSummer15ADC.pdf)]


Razavi B. Analysis and Design of Data Converters. Cambridge University Press; 2025.