import and compile order

project

yapp_pkg.sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
package yapp_pkg;
import uvm_pkg::*;
`include "uvm_macros.svh"

typedef uvm_config_db#(virtual yapp_if) yapp_vif_config;

`include "yapp_packet.sv"
`include "yapp_tx_monitor.sv"
`include "yapp_tx_sequencer.sv"
`include "yapp_tx_seqs.sv"
`include "yapp_tx_driver.sv"
`include "yapp_tx_agent.sv"
`include "yapp_env.sv"

endpackage

yapp_tx_monitor.sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class yapp_tx_monitor extends uvm_monitor;

// Collected Data handle
yapp_packet pkt;

// Count packets collected
int num_pkt_col;

// component macro
`uvm_component_utils_begin(yapp_tx_monitor)
`uvm_field_int(num_pkt_col, UVM_ALL_ON + UVM_NOCOMPARE)
`uvm_component_utils_end
/////////////////// virtual interface ////////////////////
virtual interface yapp_if vif;
/////////////////////////////////////////////////////////

function new (string name, uvm_component parent);
super.new(name, parent);
endfunction : new
...

endclass : yapp_tx_monitor

yapp_tx_driver.sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class yapp_tx_driver extends uvm_driver #(yapp_packet);

////////////////// virtual interface ////////////////////
virtual interface yapp_if vif;
/////////////////////////////////////////////////////

int num_sent;

// component macro
`uvm_component_utils_begin(yapp_tx_driver)
`uvm_field_int(num_sent, UVM_ALL_ON + UVM_NOCOMPARE)
`uvm_component_utils_end

// Constructor - required syntax for UVM automation and utilities
function new (string name, uvm_component parent);
super.new(name, parent);
endfunction : new

function void start_of_simulation_phase(uvm_phase phase);
`uvm_info(get_type_name(), {"start of simulation for ", get_full_name()}, UVM_HIGH)
endfunction : start_of_simulation_phase
...

endclass : yapp_tx_driver

yapp_if.sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
interface yapp_if (input clock, input reset );
timeunit 1ns;
timeprecision 100ps;

import uvm_pkg::*;
`include "uvm_macros.svh"

////////////////// import package //////////////////////
import yapp_pkg::*;
//////////////////////////////////////////////////////

// Actual Signals
logic in_data_vld;
logic in_suspend;
logic [7:0] in_data;

// signal for transaction recording
bit monstart, drvstart;

// local storage for payload
logic [7:0] payload_mem [0:63];
...

endinterface : yapp_if

virtual interface is in package;

yapp_pkg is imported into interface

!!! typedef uvm_config_db#(virtual yapp_if) yapp_vif_config; is forward declaration

A forward typedef declares an identifier as a type in advance of the full definition of that type

VCS compile

1
vcs -full64 -R -sverilog  -ntb_opts uvm-1.2 +UVM_TESTNAME=short_yapp_012_test  -f vcs.f  

vcs.f

1
2
3
4
5
6
7
8
9
-timescale=1ns/1ns

+incdir+../sv

../sv/yapp_if.sv
../sv/yapp_pkg.sv
./clkgen.sv
./hw_top.sv
./tb_top.sv

output ERROR

1
2
3
4
5
6
Error-[SV-LCM-PND] Package not defined
../sv/yapp_if.sv, 18
yapp_if, "yapp_pkg::"
Package scope resolution failed. Token 'yapp_pkg' is not a package.
Originating module 'yapp_if'.
Move package definition before the use of the package.

xrun compile

1
xrun -f xrun.f

xrun.f

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
-64

-uvmhome CDNS-1.2

// incdir for include files
-incdir ../sv

+UVM_TESTNAME=short_yapp_012_test

-timescale 1ns/1ns

// compile files
../sv/yapp_if.sv
../sv/yapp_pkg.sv
./clkgen.sv
./hw_top.sv
./tb_top.sv

output Error

1
2
3
4
5
6
file: ../sv/yapp_if.sv
import yapp_pkg::*;
|
xmvlog: *E,NOPBIND (../sv/yapp_if.sv,18|14): Package yapp_pkg could not be bound.
interface worklib.yapp_if:sv
errors: 1, warnings: 0

solution

place ../sv/yapp_pkg.sv before ../sv/yapp_if.sv.

In this particular example, yapp_pkg is NOT needed in interface. just delete import yapp_pkg::* is enough in ../sv/yapp_if.sv

plain example

The order of compilation unit DON'T matter

project

hw_top.sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
module hw_top;

// Clock and reset signals
logic [31:0] clock_period;
logic run_clock;
logic clock;
logic reset;

// YAPP Interface to the DUT
yapp_if in0(clock, reset);

// CLKGEN module generates clock
clkgen clkgen (
.clock(clock),
.run_clock(1'b1),
.clock_period(32'd10)
);

yapp_router dut(
.reset(reset),
.clock(clock),
.error(),
// YAPP interface signals connection
.in_data(in0.in_data),
.in_data_vld(in0.in_data_vld),
.in_suspend(in0.in_suspend),
// Output Channels
//Channel 0
.data_0(),
.data_vld_0(),
.suspend_0(1'b0),
//Channel 1
.data_1(),
.data_vld_1(),
.suspend_1(1'b0),
//Channel 2
.data_2(),
.data_vld_2(),
.suspend_2(1'b0),
// Host Interface Signals
.haddr(),
.hdata(),
.hen(),
.hwr_rd());

...

endmodule

yapp_router.sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
module yapp_router (input clock,                              
input reset,
output error,

// Input channel
input [7:0] in_data,
input in_data_vld,
output in_suspend,
// Output Channels
output [7:0] data_0, //Channel 0
output reg data_vld_0,
input suspend_0,
output [7:0] data_1, //Channel 1
output reg data_vld_1,
input suspend_1,
output [7:0] data_2, //Channel 2
output reg data_vld_2,
input suspend_2,

// Host Interface Signals
input [15:0] haddr,
inout [7:0] hdata,
input hen,
input hwr_rd);
...
endmodule

compile

place hw_top.sv before or after yapp_router.sv doesn't matter, the compiler (xrun, vcs) can compile them successfully.

Conclusion

Always place package before DUT is preferred choice during compiling.

refernce

class forward declaration

https://vlsiverify.com/uvm/uvm_config_db-in-uvm#Precedence_Rule

Two Precedence rules

There are two precedence rules applicable to uvm_config_db. In the build_phase,

  1. A set() call in a context higher up the component hierarchy takes precedence over a set() call that occurs lower in the hierarchical path.
  2. On having same context field, the last set() call takes precedence over the earlier set() call.

Example for rule - 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
`include "uvm_macros.svh"
import uvm_pkg::*;

class component_A extends uvm_component;
int id;
`uvm_component_utils(component_A)

function new(string name = "component_A", uvm_component parent = null);
super.new(name, parent);
id = 1;
endfunction

function display();
`uvm_info(get_type_name(), $sformatf("inside component_A: id = %0d", id), UVM_LOW);
endfunction
endclass

class component_B extends component_A;
int receive_value;
int id;

`uvm_component_utils(component_B)

function new(string name = "component_B", uvm_component parent = null);
super.new(name, parent);
id = 2;
endfunction

function void build_phase(uvm_phase phase);
super.build_phase(phase);
if(!uvm_config_db #(int)::get(this, "*", "value", receive_value))
`uvm_fatal(get_type_name(), "get failed for resource in this scope");
endfunction

function display();
`uvm_info(get_type_name(), $sformatf("inside component_B: id = %0d, receive_value = %0d", id, receive_value), UVM_LOW);
endfunction
endclass

class env extends uvm_env;
`uvm_component_utils(env)
component_A comp_A;
component_B comp_B;

function new(string name = "env", uvm_component parent = null);
super.new(name, parent);
endfunction

function void build_phase(uvm_phase phase);
super.build_phase(phase);
comp_A = component_A ::type_id::create("comp_A", this);
comp_B = component_B ::type_id::create("comp_B", this);

uvm_config_db #(int)::set(this, "*", "value", 200);
endfunction

task run_phase(uvm_phase phase);
super.run_phase(phase);
void'(comp_A.display());
void'(comp_B.display());
endtask
endclass

class my_test extends uvm_test;
bit control;
`uvm_component_utils(my_test)
env env_o;

function new(string name = "my_test", uvm_component parent = null);
super.new(name, parent);
endfunction

function void build_phase(uvm_phase phase);
super.build_phase(phase);
////////////////////////////////////////////////////
env_o = env::type_id::create("env_o", this); // line 99

uvm_config_db #(int)::set(null, "*", "value", 100); // line 101
////////////////////////////////////////////////////
endfunction

function void end_of_elaboration_phase(uvm_phase phase);
super.end_of_elaboration_phase(phase);
uvm_top.print_topology();
endfunction
endclass

module tb_top;
initial begin
run_test("my_test");
end
endmodule
1
2
3
4
5
6
7
8
9
10
11
12
UVM_INFO /xcelium20.09/tools//methodology/UVM/CDNS-1.2/sv/src/base/uvm_root.svh(605) @ 0: reporter [UVMTOP] UVM testbench topology:
--------------------------------------
Name Type Size Value
--------------------------------------
uvm_test_top my_test - @1810
env_o env - @1877
comp_A component_A - @1922
comp_B component_B - @1953
--------------------------------------

UVM_INFO testbench.sv(14) @ 0: uvm_test_top.env_o.comp_A [component_A] inside component_A: id = 1
UVM_INFO testbench.sv(36) @ 0: uvm_test_top.env_o.comp_B [component_B] inside component_B: id = 2, receive_value = 100

As you can see , the uvm_config_db::set is after the factory type_id::create, but receive_value is still 100, I believe that build_phase of upper hierarchy finish first before create lower components.

But the recommendation in literature and many web is place uvm_config_db::set before create

Simple Example for rule - 2

1
2
uvm_config_db #(int)::set(null, "*", "value", 100);
uvm_config_db #(int)::set(null, "*", "value", 200);

[complete code]

1
2
3
4
5
6
7
8
9
10
11
12
UVM_INFO /xcelium20.09/tools//methodology/UVM/CDNS-1.2/sv/src/base/uvm_root.svh(605) @ 0: reporter [UVMTOP] UVM testbench topology:
--------------------------------------
Name Type Size Value
--------------------------------------
uvm_test_top my_test - @1810
env_o env - @1877
comp_A component_A - @1924
comp_B component_B - @1955
--------------------------------------

UVM_INFO testbench.sv(14) @ 0: uvm_test_top.env_o.comp_A [component_A] inside component_A: id = 1
UVM_INFO testbench.sv(36) @ 0: uvm_test_top.env_o.comp_B [component_B] inside component_B: id = 2, receive_value = 200

Another Example for rule - 2

The set in super.build_phase and set in current build_phase are at the same hierarchy, so rule-2 apply

base_test

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class base_test extends uvm_test;

// component macro
`uvm_component_utils(base_test)

router_tb tb;

// component constructor
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction : new

// UVM build_phase()
function void build_phase(uvm_phase phase);
super.build_phase(phase);
uvm_config_int::set(this, "*", "recording_detail", 1);
uvm_config_wrapper::set(this, "tb.yapp.tx_agent.sequencer.run_phase",
"default_sequence",
yapp_5_packets::get_type());
tb = router_tb::type_id::create("tb", this);
endfunction : build_phase

endclass : base_test

test2 - One

yapp_incr_payload_seq override the yapp_5_packets in super.build_phase(phase), yapp_incr_payload_seq is used.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class test2 extends base_test;

// component macro
`uvm_component_utils(test2)

// component constructor
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction : new

function void build_phase(uvm_phase phase);
yapp_packet::type_id::set_type_override(short_yapp_packet::get_type());
super.build_phase(phase);
uvm_config_wrapper::set(this, "tb.yapp.tx_agent.sequencer.run_phase",
"default_sequence",
yapp_incr_payload_seq::get_type());
endfunction : build_phase

endclass : test2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
---------------------------------------------------------------------------------------------------------------------                   
Name Type Size Value
---------------------------------------------------------------------------------------------------------------------
req short_yapp_packet - @3045
length integral 6 'h5
addr integral 2 'h1
payload da(integral) 5 -
[0] integral 8 'h0
[1] integral 8 'h1
[2] integral 8 'h2
[3] integral 8 'h3
[4] integral 8 'h4
parity integral 8 'h11
parity_type parity_t 1 GOOD_PARITY
packet_delay integral 32 'd19
begin_time time 64 0
depth int 32 'd2
parent sequence (name) string 21 yapp_incr_payload_seq
parent sequence (full name) string 61 uvm_test_top.tb.yapp.tx_agent.sequencer.yapp_incr_payload_seq
sequencer string 39 uvm_test_top.tb.yapp.tx_agent.sequencer
---------------------------------------------------------------------------------------------------------------------

test2 - Two

the yapp_5_packets in super.build_phase(phase) overide yapp_incr_payload_seq in test2's build_phase, yapp_5_packets is used

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class test2 extends base_test;

// component macro
`uvm_component_utils(test2)

// component constructor
function new(string name, uvm_component parent);
super.new(name, parent);
endfunction : new

function void build_phase(uvm_phase phase);
yapp_packet::type_id::set_type_override(short_yapp_packet::get_type());
uvm_config_wrapper::set(this, "tb.yapp.tx_agent.sequencer.run_phase",
"default_sequence",
yapp_incr_payload_seq::get_type());
super.build_phase(phase);
endfunction : build_phase

endclass : test2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
--------------------------------------------------------------------------------------------------------------                          
Name Type Size Value
--------------------------------------------------------------------------------------------------------------
req short_yapp_packet - @3176
length integral 6 'h6
addr integral 2 'h1
payload da(integral) 6 -
[0] integral 8 'h4f
[1] integral 8 'hbe
[2] integral 8 'hb
[3] integral 8 'h1d
[4] integral 8 'h72
[5] integral 8 'hc5
parity integral 8 'h49
parity_type parity_t 1 GOOD_PARITY
packet_delay integral 32 'd0
begin_time time 64 40
depth int 32 'd2
parent sequence (name) string 14 yapp_5_packets
parent sequence (full name) string 54 uvm_test_top.tb.yapp.tx_agent.sequencer.yapp_5_packets
sequencer string 39 uvm_test_top.tb.yapp.tx_agent.sequencer
--------------------------------------------------------------------------------------------------------------

  • Laplace transform
    • a generalization of the continuous-time Fourier transform
    • converts integro-differential equations into algebraic equations
  • z-transforms
    • a generalization of the discrete-time Fourier transform
    • converts difference equations into algebraic equations

system function, transfer function: \(H(s)\)

frequency response: \(H(j\omega)\), if the ROC of \(H(s)\) includes the imaginary axis, i.e.\(s=j\omega \in \text{ROC}\)

Laplace Transform

To specify the Laplace transform of a signal, both the algebraic expression and the ROC are required. The ROC is the range of values of \(s\) for the integral of \(t\) converges

bilateral Laplace transform

image-20241001140721422

where \(s\) in the ROC and \(\mathfrak{Re}\{s\}=\sigma\)

The formal evaluation of the integral for a general \(X(s)\) requires the use of contour integration in the complex plane. However, for the class of rational transforms, the inverse Laplace transform can be determined without directly evaluating eq. (9.56) by using the technique of partial fraction expansion

ROC Property

The range of values of s for which the integral in converges is referred to as the region of convergence (which we abbreviate as ROC) of the Laplace transform

image-20241001133645466

image-20241001152307222

image-20241001153011746

i.e. no pole in RHP for stable LTI sytem

System Causality

For a causal LTI system, the impulse response is zero for \(t \lt 0\) and thus is right sided

image-20241001164006698

causality implies that the ROC is to the right of the rightmost pole, but the converse is not in general true, unless the system function is rational

System Stability

The system is stable, or equivalently, that \(h(t)\) is absolutely integrable and therefore has a Fourier transform, then the ROC must include the entire \(j\omega\)-axis

image-20241001223128791

image-20241001163547031

all of the poles have negative real parts

Unilateral Laplace transform

analyzing causal systems and, particularly, systems specified by linear constant-coefficient differential equations with nonzero initial conditions (i.e., systems that are not initially at rest)

image-20241001180202348

A particularly important difference between the properties of the unilateral and bilateral transforms is the differentiation property \(\frac{d}{dt}x(t)\)

Laplace Transform
Bilateral Laplace Transform \(sX(s)\)
Unilateral Laplace Transform \(sX(s)-x(0^-)\)

image-20241001183543726

Integration by parts for unilateral Laplace transform

image-20241001184124032

in Bilateral Laplace Transform

image-20241001231719320

In fact, the initial- and final-value theorems are basically unilateral transform properties, as they apply only to signals \(x(t)\) that are identically \(0\) for \(t \lt 0\).

\(z\)-Transform

The \(z\)-transform for discrete-time signals is the counterpart of the Laplace transform for continuous-time signals

image-20241001204402907

where \(z=re^{j\omega}\)

image-20241001204810918

The \(z\)-transform evaluated on the unit circle corresponds to the Fourier transform

image-20241001223944822

ROC Property

image-20241001222148012

system stability

The system is stable, or equivalently, that \(h[n]\) is absolutely summable and therefore has a Fourier transform, then the ROC must include the unit circle

Unilateral \(z\)-Transform

image-20241001225603923

The time shifting property is different in the unilateral case because the lower limit in the unilateral transform definition is fixed at zero, \(x[n-n_0]\)

bilateral \(z\)-transform

image-20241001232749554

unilateral \(z\)-transform

image-20241001233014484

Initial rest condition

image-20241001233548788

Initial Value Theorem & Final Value Theorem

Laplace Transform

Two valuable Laplace transform theorem

  • Initial Value Theorem, which states that it is always possible to determine the initial value of the time function \(f(t)\) from its Laplace transform \[ \lim _{s\to \infty}sF(s) = f(0^+) \]

  • Final Value Theorem allows us to compute the constant steady-state value of a time function given its Laplace transform \[ \lim _{s\to 0}sF(s) = f(\infty) \]

    If \(f(t)\) is step response, then \(f(0^+) = H(\infty)\) and \(f(\infty) = H(0)\), where \(H(s)\) is transfer function

\(z\)-transform

Initial Value Theorem \[ f[0]=\lim_{z\to\infty}F(z) \] final value theorem \[ \lim_{n\to\infty}f[n]=\lim_{z\to1}(z-1)F(z) \]

Coert Vonk. Initial/final value proofs [https://coertvonk.com/physics/lfz-transforms/z/initial-final-value-proofs-31543]

\(s\)- and \(z\)-Domains Conversion

image-20240429220303281

image-20240429215455332

Staszewski, Robert Bogdan, and Poras T. Balsara. All-digital frequency synthesizer in deep-submicron CMOS. John Wiley & Sons, 2006.


Connection between the Laplace transform and the \(z\)-transform

image-20241002112611432

A continuous-time system with transfer function \(H(s)\) that is identical in structure to the discrete-time system \(H[z]\) except that the delays in \(H[z]\) are replaced by elements that delay continuous-time signals.

delay element Time domain Transform
\(z\)-transform \(\delta[n-1]\) \(z^{-1}\)
Laplace transform \(\delta(t-T)\) \(e^{-sT}\)
\(z\)-transform Laplace transform
\(x[n]\) \(X[z]=\sum_{n=0}^{\infty}x[n]z^{-n}\) \(\bar{x}(t)=\sum_{n=0}^{\infty}x[n]\delta(t-nT)\) \(\overline{X}(s)=\sum_{n=0}^{\infty}x[n]e^{-snT}\)
\(y[n]\) \(Y[z]=\sum_{n=0}^{\infty}y[n]z^{-n}\) \(\bar{y}(t)=\sum_{n=0}^{\infty}y[n]\delta(t-nT)\) \(\overline{Y}(s)=\sum_{n=0}^{\infty}y[n]e^{-snT}\)
\(h[n]\) \(H[z]=\sum_{n=0}^{\infty}h[n]z^{-n}\) \(\bar{h}(t)=\sum_{n=0}^{\infty}h[n]\delta(t-nT)\) \(\overline{H}(s)=\sum_{n=0}^{\infty}h[n]e^{-snT}\)
\(y[n]=x[n]*h[n]\) \(Y[z]=X[z]H[z]\) \(\bar{y}(t)=\bar{x}(t)*\bar{h}(t)\) \(\overline{Y}(s)=\overline{X}(s)\overline{H}(s)\)

Therefore, we obtain

\[\begin{align} \sum_{n=0}^{\infty}y[n]z^{-n} &=\sum_{n=0}^{\infty}x[n]z^{-n}\cdot\sum_{n=0}^{\infty}h[n]z^{-n} \\ \sum_{n=0}^{\infty}y[n]e^{-snT} &=\sum_{n=0}^{\infty}x[n]e^{-snT}\cdot \sum_{n=0}^{\infty}h[n]e^{-snT} \end{align}\]

The \(z\)-transform of a sequence can be considered to be the Laplace transform of impulses sampled train with a change of variable \(z = e^{sT}\) or \(s = \frac{1}{T}\ln z\)

Note that the transformation \(z = e^{sT}\) transforms the imaginary axis in the \(s\) plane (\(s = j\omega\)) into a unit circle in the \(z\) plane (\(z = e^{sT} = e^{j\omega T}\), or \(|z| = 1\))

Note: \(\bar{h}(t)\) is the impulse sampled version of \(h(t)\)


Note \(\bar{h}(t)\) is impulse sampled signal, whose CTFT is scaled by \(\frac{1}{T}\) of continuous signal \(h(t)\), \(\overline{H}[e^{sT}]=\overline{H}(e^{sT})\) is the approximation of continuous time system response, for example summation \(\frac{1}{1-z^{-1}}\) \[ \frac{1}{1-z^{-1}} = \frac{1}{1-e^{-sT}} \approx \frac{1}{j\omega \cdot T} \] And we know transform of integral \(u(t)\) is \(\frac{1}{s}\), as expected there is ratio \(T\)

impulse invariance

A straightforward and useful relationship between the continuous-time impulse response \(h_c(t)\) and the discrete-time impulse response \(h[n]\)

image-20241002133303153

\[ h[n] = Th_c(nT) \]

and \(T\) is chosen such that

\[ H_c(j\omega)=0, \space\space |\hat{\omega}| \ge \frac{\pi}{T} \]

When \(h[n]\) and \(h_c(t)\) are related through the above equation, i.e., the impulse response of the discrete-time system is a scaled, sampled version of \(h_c(t)\), the discrete-time system is said to be an impulse-invariant version of the continuous-time system

we have \[ H(e^{j\hat{\omega}}) = H_c\left(j\frac{\hat{\omega}}{T}\right),\space\space |\hat{\omega}| \lt \pi \]

  • \(h[n] = Th_c(nT)\) & \(T\) is small enough

    only guarantees the output equivalence only at the sampling instants, that is, \(y_c(nT) = y_r(nT)\)

  • Provided \(H_c(j\Omega)\) is bandlimited & \(T \lt 1/2f_h\)

    guarantees \(y_c(t) = y_r(t)\)

The scaling of \(T\) can alternatively be thought of as a normalization of the time domain, that is average impulse response shall be same i.e., \(h[n]\times 1 = h(nT)\times T\)

Transfer function & sampled impulse response

continuous-time filter designs to discrete-time designs through techniques such as impulse invariance

useful functions

  • using fft

    The outputs of the DFT are samples of the DTFT

  • using freqz

    modeling as FIR filter, and the impulse response sequence of an FIR filter is the same as the sequence of filter coefficients, we can express the frequency response in terms of either the filter coefficients or the impulse response

    fft is used in freqz internally

freqz method is straightforward, which apply impulse invariance criteria. Though fft is used for signal processing mostly,


image-20241002082937903

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
clear all;
clc;

%% continuous system
s = tf('s');
h = 2*pi/(2*pi+s); % First order lowpass filter with 3-dB frequency 1Hz
[mag, phs, wout] = bode(h);
fct = wout(:)/2/pi;
Hct_dB = 20*log10(mag(:));


fstep = 0.01; % freq resolution
fnyqst = 1000;
Ts = 1/(2*fnyqst);
Fs = 1/Ts; % sampling freq
Ns = ceil(Fs/fstep); % samping points
fstep = Fs/Ns; % update fstep
t = (0:Ns-1)*Ts; % sampling time points

y = impulse(h, t); % impulse resp

%% modelling as discrete system
Y = fft(y); % dft
Hfft = Y * Ts; % !!! multiply Ts
Hfft_dB = 20*log10(abs(Hfft(1:Ns/2+1)));
ffft = (1:Ns/2+1)*fstep - fstep;


[Hfir, ffir] = freqz(y, 1, [], 1/Ts); % modelling as FIR
Hfir = Hfir * Ts; % !!! multiply Ts
Hfir_dB = 20*log10(abs(Hfir));

%% plot
semilogx(fct, Hct_dB, '-ok', ffft, Hfft_dB, 'r.-', ffir, Hfir_dB, 'b--');
legend('bode(s)', 'fft', 'FIR model')
xlabel('Freq(Hz)');
ylabel('dB');
xlim([1e-2 1e2]);
grid on;
title('frequency response of different methods');

FIR Equalization

Frequency Response

image-20220322093428287 \[ z = e^{j\omega T_s} \]

Unit impulse

filter coefficients are [-0.131, 0.595, -0.274] and sampling period is 100ps

image-20220428125454912

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
%% Frequency response
w = [-0.131, 0.595, -0.274];
Ts = 100e-12;
[mag, w] = freqz(w, 1, [], 1/Ts);
subplot(2, 1, 1)
plot(w/1e9, 20*log10(abs(mag)));
xlabel('Freq(GHz)');
ylabel('dB');
grid on;
title('frequency response');

%% unit impulse response from transfer function
subplot(2, 1, 2)
z = tf('z', Ts);
h = -0.131 + 0.595*z^(-1) -0.274*z^(-2);
[y, t] = impulse(h);
stem(t*1e10, y*Ts); % !!! y*Ts is essential
grid on;
title("unit impulse response");
xlabel('Time(\times 100ps)');
ylabel('mag');

impulse:

For discrete-time systems, the impulse response is the response to a unit area pulse of length Ts and height 1/Ts, where Ts is the sample time of the system. (This pulse approaches \(\delta(t)\) as Ts approaches zero.)

Scale output:

Multiply impulse output with sample period Ts in order to correct 1/Ts height of impulse function.

PSD transformation

If we have power spectrum or power spectrum density of both edge's absolute jitter (\(x(n)\)) , \(P_{\text{xx}}\)

Then 1UI jitter is \(x_{\text{1UI}}(n)=x(n)-x(n-1)\), and Period jitter is \(x_{\text{Period}}(n)=x(n)-x(n-2)\), which can be modeled as FIR filter, \(H(\omega) = 1-z^{-k}\), i.e. \(k=1\) for 1UI jitter and \(k=2\) Period jitter \[\begin{align} P_{\text{xx}}'(\omega) &= P_{\text{xx}}(\omega) \cdot \left| 1-z^{-k} \right|^2 \\ &= P_{\text{xx}}(\omega) \cdot \left| 1-(e^{j\omega T_s})^{-k} \right|^2 \\ &= P_{\text{xx}}(\omega) \cdot \left| 1-e^{-j\omega T_s k} \right|^2 \end{align}\]

image-20220519172239916

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
clear all
close all
clc

xf_fs = 0:0.01:0.5;
k = 1;
H_1UI = 1 - exp(-1i*2*pi*xf_fs);
HH_1UI = abs(H_1UI).^2;
subplot(2, 1, 1);
plot(xf_fs, HH_1UI);
grid on;
xlabel('Freq');
ylabel('|H|^2')
title('Weight for 1UI jitter');

k = 2;
H_period = 1 - exp(-1i*2*pi*xf_fs);
HH_period = abs(H_period).^2;
subplot(2, 1, 2)
plot(xf_fs, HH_period);
grid on;
xlabel('Freq');
ylabel('|H|^2')
title('Weight for Period jitter');

image-20220709104127384 \[ x(t-\Delta T)\overset{FT}{\longrightarrow} X(s)e^{-\Delta T \cdot s} \]

Bilinear Transform

[https://tttapa.github.io/Pages/Mathematics/Systems-and-Control-Theory/Digital-filters/Discretization/Bilinear-transform.html]

an algebraic transformation between the variables \(s\) and \(z\) that maps the entire imaginary \(j\Omega\)-axis in the \(s\)-plane to one revolution of the unit circle in the \(z\)-plane

\[\begin{align} z &= \frac{1+s\frac{T_s}{2}}{1-s\frac{T_s}{2}} \\ s &= \frac{2}{T_s}\cdot \frac{1-z^{-1}}{1+z^{-1}} \end{align}\]

where \(T_s\) is the sampling period

image-20241125001024136

frequency warping:

image-20241125002523844

  • The bilinear transformation avoids the problem of aliasing encountered with the use of impulse invariance, because it maps the entire imaginary axis of the \(s\)-plane onto the unit circle in the \(z\)-plane

  • impulse invariance cannot be used to map highpass continuous-time designs to high pass discrete-time designs, since highpass continuous-time filters are not bandlimited

  • Due to nonlinear warping of the frequency axis introduced by the bilinear transformation, bilinear transformation applied to a continuous-time differentiator will not result in a discrete-time differentiator. However, impulse invariance can be applied to bandlimited continuous-time differentiator

    The feature of the frequency response of discrete-time differentiators is that it is linear with frequency


The simple approximation \(z=e^{sT}\approx1+sT\), the first equal come from impulse invariance essentially

image-20241024230308374

image-20241026230904395

reference

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. 1996. Signals & systems (2nd ed.)

Alan V Oppenheim, Ronald W. Schafer. 2010. Discrete-Time Signal Processing, 3rd edition

B.P. Lathi, Roger Green. Linear Systems and Signals (The Oxford Series in Electrical and Computer Engineering) 3rd Edition

Sam Palermo, ECEN720, Lecture 7: Equalization Introduction & TX FIR Eq

Sam Palermo, ECEN720, Lab5 –Equalization Circuits

B. Razavi, "The z-Transform for Analog Designers [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 12, Issue. 3, pp. 8-14, Summer 2020. [https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_3_2020.pdf]

Jhwan Kim, CICC 2022, ES4-4: Transmitter Design for High-speed Serial Data Communications

Mathuranathan. Digital filter design – Introduction [https://www.gaussianwaves.com/2020/02/introduction-to-digital-filter-design/]

Daniel Boschen, "Fast Track to Designing FIR Filters with Python" [https://events.gnuradio.org/event/24/contributions/598/attachments/186/485/Boschen%20FIR%20Filter%20Presentation.pdf]

Daniel Boschen, "Quick Start on Control Loops with Python" [https://events.gnuradio.org/event/24/contributions/599/attachments/187/480/Boschen%20Control%20Presentation.pdf]

Most user-defined UVM classes are placed in separate files

Classes can only be compiled from a module or package scope

Recommendation:

  • Include related class files into a package
  • Import the package into modules where required

The UVM library is supplied in the package uvm_pkg

  • Import package to access library
  • The macro file uvm_macros.svh must be included separately

yapp_packet.sv

1
2
3
class yapp_packet extends uvm_sequence_item;
...
endclass : yapp_packet

yapp_pkg.sv

1
2
3
4
5
6
package  yapp_pkg;
import uvm_pkg::*;
`include "uvm_macros.svh"

`include "yapp_packet.sv"
endpackage : yapp_pkg

run.f for xrun

1
2
3
4
5
6
7
8
9
10
11
// 64 bit option for AWS labs
-64

-uvmhome CDNS-1.2

// include directories
-incdir ../sv

// compile files
../sv/yapp_pkg.sv
./top.sv

Matching network

TODO 📅

Q factor

TODO 📅

Self-Resonant Frequency

image-20240802210109935

\[ f_\text{SRF} = \frac{1}{2\pi \sqrt{LC}} \] The SRF of an inductor is the frequency at which the parasitic capacitance of the inductor resonates with the ideal inductance of the inductor, resulting in an extremely high impedance. The inductance only acts like an inductor below its SRF

image-20241221092745311

  • For choking applications, chose an inductor whose SRF is at or near the frequency to be attenuated

  • For other applications, the SRF should be at least 10 times higher than the operating frequency

    it is more important to have a relatively flat inductance curve (constant inductance vs. frequency) near the required frequency

[Understanding RF Inductor Specifications, https://www.ece.uprm.edu/~rafaelr/inel5325/SupportDocuments/doc671_Selecting_RF_Inductors.pdf]

[RFIC-GPT Wiki, https://wiki.icprophet.net/]

T-coil

  • Broaden the bandwidth
  • Create a constant, resistive input impedance in the presence of a heavy load capacitance (ESD protection circuit)

L1 = L2 for impedance matching

The use of T-coils can dramatically increase the bandwidth and improve the return loss in both TXs and RXs.

image-20240712234028634

equivalent circuit

image-20240713001415948

image-20240713011127116

image-20240713011152541

Note the negative sign of \(L_M\), which is a consequence of magnetic coupling; owing to this, the driving impedance at the center tap as seen by \(C\) is lower than without the coupling.

\[\begin{align} Z_{c} &= sL_a/2 -sL_M = sL/2 - sL_M/2 \\ Z_{noc} &= sL/2 \end{align}\]

Bridged T-Coil

The vertical stacking of the inductor halves causes a significant bridging capacitance \(C_B\)​ between them.

The most important aspect is that \(C_B\) does not prohibit perfect impedance matching but can be used to tune certain transfer functions.

Tcoil in RX

image-20220502201254057

ppwl: Independent Piece-Wise Linear Resistive Source

image-20220502201321341

simple model

L1, L2, Km, Cb

image-20220502215310947

image-20220622224842237

image-20220622225709712

lumped model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
simulator lang=spectre
include "/path/to/INDL0.scs"
subckt for_import(p0 p1 p2 gnd)
xmod (p0 p1 p2 gnd) INDL0
ends for_import

x_1 (p_1_1 p_1_2 p_1_3 0) for_import
v_1_1 (p_1_1 0) vsource mag=-1
v_1_2 (p_1_2 0) vsource mag=0
v_1_3 (p_1_3 0) vsource mag=0
save v_1_1:p v_1_2:p v_1_3:p

x_2 (p_2_1 p_2_2 p_2_3 0) for_import
v_2_1 (p_2_1 0) vsource mag=0
v_2_2 (p_2_2 0) vsource mag=-1
v_2_3 (p_2_3 0) vsource mag=0
save v_2_1:p v_2_2:p v_2_3:p

x_3 (p_3_1 p_3_2 p_3_3 0) for_import
v_3_1 (p_3_1 0) vsource mag=0
v_3_2 (p_3_2 0) vsource mag=0
v_3_3 (p_3_3 0) vsource mag=-1
save v_3_1:p v_3_2:p v_3_3:p
Y ac start=1.000000e+08 stop=2.000000e+10 step=1.000000e+08

xsp (p_1 p_2 p_3 0) for_import
port1 (p_1 0) port
port2 (p_2 0) port
port3 (p_3 0) port
S sp start=1.000000e+08 stop=2.000000e+10 step=1.000000e+08 ports=[ port1 port2 port3]

image-20220503005728763

image-20220503005903105


EMX_plot_tcoil in emxform.ils

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
(define (EMX_plot_tcoil bgui wid what)
(needNCells 'adtComplex 100000)
(letseq ((to_z (lambda (ys)
(letseq ((y11 (EMX_matrix_ref ys 0 0))
(y12 (EMX_matrix_ref ys 0 1))
(y21 (EMX_matrix_ref ys 1 0))
(y22 (EMX_matrix_ref ys 1 1))
(det y11*y22-y12*y21)
(z11 y22/det)
(z12 -y12/det)
(z22 y11/det))
(list z11 z12 z22))))
(ground
(lambda (y p)
(letseq ((n (EMX_matrix_rows y))
(yg (make_EMX_matrix n-1)))
(do ((i 0 i+1))
((i >= n-1))
(do ((j 0 j+1))
((j >= n-1))
(EMX_matrix_set yg i j (EMX_matrix_ref y i+(if (i >= p) 1 0) j+(if (j >= p) 1 0)))))
yg)))
(reduce
(lambda (yys)
(letseq ((xvec (drGetWaveformXVec (car yys)))
(n (drVectorLength xvec))
(yyvecs (mapcar drGetWaveformYVec yys))
(zz1 (drCreateVec 'doublecomplex n))
(zz2 (drCreateVec 'doublecomplex n))
(zz3 (drCreateVec 'doublecomplex n)))
(do ((i 0 i+1))
((i >= n))
(let ((ys (mapcar (lambda (w) (drGetElem w i)) yyvecs)))
(setq ys (ground (as_EMX_matrix 3 3 ys) 2))
(let ((zz (to_z ys)))
(drSetElem zz1 i (nth 0 zz))
(drSetElem zz2 i (nth 1 zz))
(drSetElem zz3 i (nth 2 zz)))))
(list (drCreateWaveform xvec zz1)
(drCreateWaveform xvec zz2)
(drCreateWaveform xvec zz3)))))
(get_k
(lambda (l12 l1122)
(letseq ((xvec (drGetWaveformXVec l12))
(n (drVectorLength xvec))
(l12v (drGetWaveformYVec l12))
(l1122v (drGetWaveformYVec l1122))
(resultv (drCreateVec 'double n)))
(do ((i 0 i+1))
((i >= n))
(letseq ((l12i (drGetElem l12v i))
(l1122i (drGetElem l1122v i))
(kk (if (l1122i > 0.0)
l12i/(sqrt l1122i)
0.0))
(k (if ((abs kk) < 2.0) kk 0.0)))
(drSetElem resultv i k)))
(drCreateWaveform xvec resultv)))))
(EMX_plot_aux bgui wid what 3
'("Inductance" "Q" "k")
'("Henry" "" "")
(lambda (ys)
(letseq ((zs (reduce ys))
(z11 (nth 0 zs))
(z12 (nth 1 zs))
(z22 (nth 2 zs))
(pi 3.14159265358979)
(f (xval z11))
(l11 (imag z11)/(2*pi*f))
(q11 (imag z11)/(real z11))
(l12 (imag z12)/(2*pi*f))
(l22 (imag z22)/(2*pi*f))
(q22 (imag z22)/(real z22))
(k (get_k l12 l11*l22)))
`((,l11 ,l22) (,q11 ,q22) (,k))))
'(("L1" "L2") ("Q1" "Q2") ("k")))))

Tcoil vs tapped inductor

tcoil and tapped inductor share same EM simulation result, and use modelgen with different model formula.

The relationship is \[ L_{\text{sim}} = L1_{\text{sim}}+L2_{\text{sim}}+2\times k_{\text{sim}} \times \sqrt{L1_{\text{sim}}\cdot L2_{\text{sim}}} \] where \(L1_{\text{sim}}\), \(L2_{\text{sim}}\) and \(k_{\text{sim}}\) come from tcoil model result, \(L_{\text{sim}}\) comes from tapped inductor model result

\(k_{\text{sim}}\) in EMX have assumption, induce current from P1 and P2 Given Dot Convention:

Same direction : k > 0

Opposite direction : k < 0

So, the \(k_{\text{sim}}\) is negative if routing coil in same direction

image-20220623013225554

image-20220623013923263

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
% EMX - shield tcoil model
L1 = csvread('./L1sim.csv', 1, 0);
L2 = csvread('./L2sim.csv', 1, 0);
k = csvread('./ksim.csv', 1, 0);

% EMX - Tapped shield inductor
L = csvread('./Lsim.csv', 1, 0);

freq = L1(:, 1)/1e9; % GHz
L1 = L1(:, 2);
L2 = L2(:, 2);
k = -k(:, 2); % Caution: minus of EMX ksim due to same current direction

L = L(:, 2);

Lcalc = L1 + L2 + 2*k.*(L1.*L2).^0.5;

plot(freq, L*1e9, 'r', 'LineWidth', 3);
hold on;
plot(freq, Lcalc*1e9, '--b', 'LineWidth', 3);
grid on;
xlabel('Freq (GHz)');
ylabel('Inductance (nH)');
legend('Tapped inductor model', 'tcoil model calc');

电磁感应定律 (electromagnetic induction)

任何封闭电路中感应电动势大小,等于穿过这一电路磁通量的变化率。 \[ \epsilon = -\frac{d\Phi_B}{dt} \] 其中 \(\epsilon\)是电动势,单位为伏特

\(\Phi_B\)是通过电路的磁通量,单位为韦伯

电动势的方向(公式中的负号)由楞次定律决定

楞次定律: 由于磁通量的改变而产生的感应电流,其方向为抗拒磁通量改变的方向。

在回路中产生感应电动势的原因是由于通过回路平面的磁通量的变化,而不是磁通量本身,即使通过回路的磁通量很大,但只要它不随时间变化,回路中依然不会产生感应电动势。

自感电动势

当电流\(I\)随时间变化时,在线圈中产生的自感电动势为 \[ \epsilon = -L\frac{dI}{dt} \]

image-20240713131201618

image-20240713145315890

image-20240713145343423

image-20240713145005306

image-20240713145212327


image-20240713140911612

image-20240713135148710

image-20240713135236291

同名端:当两个电流分别从两个线圈的对应端子流入 ,其所 产生的磁场相互加强时,则这两个对应端子称为同名端。

image-20240713142238398

image-20240713142249362

image-20240713142506673

reference

S. Shekhar, J. S. Walling and D. J. Allstot, "Bandwidth Extension Techniques for CMOS Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006

David J. Allstot Bandwidth Extension Techniques for CMOS Amplifiers

B. Razavi, "The Bridged T-Coil [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Volume. 7, Issue. 40, pp. 10-13, Fall 2015.

B. Razavi, "The Design of Broadband I/O Circuits [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 13, Issue. 2, pp. 6-15, Spring 2021.

S. Galal and B. Razavi, "Broadband ESD protection circuits in CMOS technology," in IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003, doi: 10.1109/JSSC.2003.818568.

M. Ker and Y. Hsiao, "On-Chip ESD Protection Strategies for RF Circuits in CMOS Technology," 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2006, pp. 1680-1683, doi: 10.1109/ICSICT.2006.306371.

M. Ker, C. Lin and Y. Hsiao, "Overview on ESD Protection Designs of Low-Parasitic Capacitance for RF ICs in CMOS Technologies," in IEEE Transactions on Device and Materials Reliability, vol. 11, no. 2, pp. 207-218, June 2011, doi: 10.1109/TDMR.2011.2106129.

Bob Ross, "T-Coil Topics" DesignCon IBIS Summit 2011

Ross, Bob and Cong Ling. “Wang Algebra: From Theory to Practice.” IEEE Open Journal of Circuits and Systems 3 (2022): 274-285.

S. Lin, D. Huang and S. Wong, "Pi Coil: A New Element for Bandwidth Extension," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp. 454-458, June 2009

Starič, Peter and Erik Margan. “Wideband amplifiers.” (2006).

Kosnac, Stefan (2021) Analysis of On-Chip Inductors and Arithmetic Circuits in the Context of High Performance Computing [https://archiv.ub.uni-heidelberg.de/volltextserver/30559/1/Dissertation_Stefan_Kosnac.pdf]

Chapter 4.5. High Frequency Passive Devices [https://www.cambridge.org/il/files/7713/6698/2369/HFIC_chapter_4_passives.pdf]

image-20230414232256309

image-20230414232439556

Inertial delay

Inertial delay models are simulation delay models that filter pulses that are shorted than the propagation delay of Verilog gate primitives or continuous assignments (assign #5 y = ~a;)

COMBINATIONAL LOGIC ONLY !!!

  • Inertial delays swallow glitches
  • sequential logic implemented with procedure assignments DON'T follow the rule

continuous assignments

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
`timescale 1ns/100ps
module tb;

reg in;
/////////////////////////////////////////////////////
wire out;
assign #2.5 out = in;
/////////////////////////////////////////////////////
initial begin
in = 0;
#16;
in = 1;
#2;
in = 0;
#10;
in = 1;
#4;
in = 0;
end

initial begin
#50;
$finish();
end

endmodule

image-20220317000509716

procedure assignment - combinational logic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
`timescale 1ns/100ps
module tb;

reg in;
reg out;

//////////// combination logic ////////////////////////
always @(*)
#2.5 out = in;
///////////////////////////////////////////////////////
/* the above code is same with following code
always @(*) begin
#2.5;
out = in;
end
*/
initial begin
in = 0;
#16;
in = 1;
#2;
in = 0;
#10;
in = 1;
#4;
in = 0;
end

initial begin
#50;
$finish();
end

endmodule

image-20220316235257361

procedure assignment - sequential logic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
`timescale 1ns/100ps
module tb;
reg clk;

reg in;
reg out;

always begin
clk = 0;
#5;
forever begin
clk = ~clk;
#5;
end
end
//////////// sequential logic //////////////////
always @(posedge clk)
#2.5 out <= in;
///////////////////////////////////////////////
initial begin
in = 0;
#16;
in = 1;
#2;
in = 0;
#10;
in = 1;
end

initial begin
#50;
$finish();
end

endmodule

image-20220316235620168

As shown above, sequential logic DON'T follow inertial delay

Transport delay

Transport delay models are simulation delay models that pass all pulses, including pulses that are shorter than the propagation delay of corresponding Verilog procedural assignments

  • Transport delays pass glitches, delayed in time
  • Verilog can model RTL transport delays by adding explicit delays to the right-hand-side (RHS) of a nonblocking assignment
1
2
always @(*)
y <= #5 ~a;

nonblocking assignment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
`timescale 1ns/100ps
module tb;

reg in;
reg out;
/////////////// nonblocking assignment ///
always @(*) begin
out <= #2.5 in;
end
/////////////////////////////////////////
initial begin
in = 0;
#16;
in = 1;
#2;
in = 0;
#10;
in = 1;
#4;
in = 0;
end

initial begin
#50;
$finish();
end

endmodule

image-20220317003146825

blocking assignment

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
`timescale 1ns/100ps
module tb;

reg in;
reg out;
/////////////// blocking assignment ///
always @(*) begin
out = #2.5 in;
end
/////////////////////////////////////////
initial begin
in = 0;
#16;
in = 1;
#2;
in = 0;
#10;
in = 1;
#4;
in = 0;
end

initial begin
#50;
$finish();
end

endmodule

image-20220317003819457

It seems that new event is discarded before previous event is realized.

reference

Verilog Nonblocking Assignments With Delays, Myths & Mysteries

Correct Methods For Adding Delays To Verilog Behavioral Models

Article (20488135) Title: Selecting Different Delay Modes in GLS (RAK) URL: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w000009bdLyEAI

Article (20447759) Title: Gate Level Simulation (GLS): A Quick Guide for Beginners URL: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1Od0000005xEorEAE

What Is Real Number Modeling?

  • model analog blocks operation as signal flow model
  • only the digital solver is used for high-speed simulation
    • Event-driven
    • No convergence issues, because no analog solver is used
  • Five different language standards support real number modeling:
    • wreal (wired-real) ports in Verilog-AMS
    • real data type in VHDL
    • real data type in Verilog
    • real variables and nettypes in SystemVerilog (SV)
    • real types in e

Benefits of RNM

  • Most analog circuits that need to be modeled for MS verification at the SoC level can be described in terms of real-valued voltages or currents
  • RNM is a mixed approach, borrowing concepts from both continuous and discrete domains
    • The values are floating-point (real) number.
    • Time is discrete; the real signals change values based on discrete events
  • Applicability of RNM is bounded primarily by signal-flow model style
  • Migrating analog behavior from the analog domain to the event or pseudo-analog domain can bring huge benefits without sacrificing too much accuracy
  • Simulation is executed by a digital simulation engine without need for the analog solver
  • Hence real-number modeling enables very high performance simulation of mixed-signal systems

Limitations of RNM

  • connecting real or wreal signals to electrical signals requires careful consideration
    • Too conservative an approach can lead to large numbers of timepoints
    • Too liberal an approach can lead to losing signal accuracy
  • Time accuracy limited by the discrete sampling approach and the `timescale setting - no continuous signals anymore
  • Limited capability for combination of signals by wiring outputs together
    • Requires assumptions about impedances to do simple merging

LVS check

LVS issue for circuits with customized devices

  • auCdl: Analog and Microwave CDL, is a netlister used for creating CDL netlist for analog circuits

  • auLVS: Analog and Microwave LVS, is used for analog circuit LVS

EMX ports

plain labels

  • pin layer
  • uncheck Cadence pins in Advanced options

rectangle pins

  • drawing layer rectangle pin and specify Access Direction as intended
  • check Cadence pins in Advanced options

The rectangle pins are always selected as driven port while there are only rectangle pin whether Cadence pins checked or not.

check ports used for simulation

use GDS view - EMX

EMX Synthesis Kits

Synthesis is a capability of the EMX Pcell library and uses scalable model data pre-generated by Continuum for a specific process and metal scheme combination.

Synthesis is supported by the Pcells that are suffixed _scalable, and these Pcells have the additional fields and buttons needed for synthesis.

port order (signals)

emxform.ils

type Port order
inductor P1 P2
shield inductor P1 P2 SHIELD
tapped inductor P1 P2 CT
tapped shield inductor P1 P2 CT SHIELD
mom/mim capacitor P1 P2
tcoil P1 P2 TAP
shield tcoil P1 P2 TAP SHIELD
tline P1 P2
differential tline P1 P2 P3 P4

EMX device info

name menu_selection (split with _ ) num_ports modelgen_type generic_model_type plot_fn
Single-ended inductor inductor_no tap_no shield_single-ended 2 inductor inductor EMX_plot_se_ind
Differential inductor inductor_no tap_no shield_differential 2 inductor inductor EMX_plot_diff_ind
Single-ended shield inductor inductor_no tap_with shield_single-ended 3 shield_inductor shield_inductor EMX_plot_se_ind
Differential shield inductor inductor_no tap_with shield_differential 3 shield_inductor shield_inductor EMX_plot_diff_ind
Tapped inductor (diff mode only) inductor_with tap_no shield_differential mode only 3 center_tapped_inductor tapped_inductor EMX_plot_ct_ind
Tapped inductor (common mode too) inductor_with tap_no shield_also fit common mode 3 center_tapped_inductor_common_mode tapped_inductor EMX_plot_ct_ind
Tapped shield inductor (diff only) inductor_with tap_with shield_differential mode only 4 center_tapped_well_inductor_common_mode tapped_shield_inductor EMX_plot_ct_ind
Single-ended cap (symm) capacitor_symmetric single-ended 2 complex_mom_capacitor mom_capacitor EMX_plot_se_cap
Differential cap (symm) capacitor_symmetric differential 2 complex_mom_capacitor mom_capacitor EMX_plot_diff_cap
Single-ended cap (asymm) capacitor_asymmetric single-ended 2 complex_asymmetric_mom_capacitor mom_capacitor EMX_plot_se_cap
Differential cap (asymm) capacitor_asymmetric differential 2 complex_asymmetric_mom_capacitor mom_capacitor EMX_plot_diff_cap
MiM capacitor capacitor_MiM 2 mim_capacitor mim_capacitor EMX_plot_se_cap
Tcoil (simple model) tcoil_simple model 3 tcoil tcoil EMX_plot_tcoil
Tcoil (complex model) tcoil_complex model 3 complex_tcoil complex_tcoil EMX_plot_tcoil
Shield tcoil tcoil_with shield 4 shield_complex_tcoil shield_tcoil EMX_plot_shield_tcoil
Transmission line transmission line_single 2 xline xline EMX_plot_xline
Diff transmission line transmission line_coupled (differential) 4 coupled_xline diff_xline EMX_plot_diff_xline

EMX plot function

EMX's formulation is defined in

1
/path/to/EMX/share/emx/virtuoso_ui/emxinterface/emxskill/emxform.ils

EMX import this file at Virtuoso startup, you have to relaunch Virtuoso if you change this file

Single-ended inductor

Both with and without shield apply

  • port-1 impedance when port-2 short

\[ Z_1 = \frac{1}{Y_{11}} \]

  • port-2 impedance when port-1 short

\[ Z_2 = \frac{1}{Y_{22}} \] Then \[\begin{align} L1 &= \frac{Im(Z_1)}{2\pi f} \\ Q1 &= \frac{Im(Z_1)}{Re(Z_1)} \\ L2 &= \frac{Im(Z_2)}{2\pi f} \\ Q2 &= \frac{Im(Z_2)}{Re(Z_2)} \end{align}\]

EMX only plot L1 and Q1

differential impedance

Y parameters to Z parameters

\[\begin{align} |Y| &= Y_{11}*Y_{22} - Y_{12}*Y_{22} \\ \begin{bmatrix} Z_{11} & Z_{12}\\ Z_{21} & Z_{22} \end{bmatrix} &= \begin{bmatrix} \frac{Y_{22}}{|Y|} & \frac{-Y_{12}}{|Y|}\\ \frac{-Y_{21}}{|Y|} & \frac{Y_{11}}{|Y|} \end{bmatrix} \end{align}\]

Then differential impedance is \[ Z_{diff} = Z_{11} - Z_{12} - Z_{21} + Z_{22} \]

image-20220330234833756

similarly, Z parameters to Y parameters \[ \begin{bmatrix} Y_{11} & Y_{12}\\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} \frac{Z_{22}}{|Z|} & \frac{-Z_{12}}{|Z|}\\ \frac{-Z_{21}}{|Z|} & \frac{Z_{11}}{|Z|} \end{bmatrix} \] where \[ |Z| = Z_{11}Z_{22} - Z_{12}Z_{21} \]

Differential inductor

Both with and without shield apply

\[\begin{align} L_{diff} &= \frac{Im(Z_{diff})}{2\pi f} \\ Q_{diff} &= \frac{Im(Z_{diff})}{Re(Z_{diff})} \end{align}\]

Center-tapped inductor

\[ Y = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13}\\ Y_{21} & Y_{22} & Y_{23}\\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix} \]

where port order is P1 P2 CT.

1
2
3
4
5
6
7
8
9
10
11
(define (EMX_plot_ct_ind bgui wid what)
(EMX_plot_aux bgui wid what 3
'("Differential inductance" "Differential Q")
'("Henry" "")
(lambda (ys)
(letseq ((z (EMX_differential (nth 0 ys) (nth 1 ys) (nth 3 ys) (nth 4 ys)))
(f (xval z))
(L (imag z)/(2*3.14159265358979*f))
(Q (imag z)/(real z)))
`((,L) (,Q))))
'(("L") ("Q"))))

Assume CT i.e. port 3 in S-parameter is grounded, (z (EMX_differential (nth 0 ys) (nth 1 ys) (nth 3 ys) (nth 4 ys))) obtain differential impedance with \(Y_{11}\), \(Y_{12}\), \(Y_{21}\) and \(Y_{22}\). \[ Y = \begin{bmatrix} Y_{11} & Y_{12}\\ Y_{21} & Y_{22} \end{bmatrix} \] Finally, differential inductance and Q are obtained, shown as below

\[\begin{align} L_{diff} &= \frac{Im(Z_{diff})}{2\pi f} \\ Q_{diff} &= \frac{Im(Z_{diff})}{Re(Z_{diff})} \end{align}\]

image-20220331013735370

Single-ended cap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
(define (EMX_plot_se_cap bgui wid what)
(EMX_plot_aux bgui wid what 2
'("Capacitance" "Q" "Capacitance" "Q")
'("Farad" "" "Farad" "")
(lambda (ys)
(letseq ((z1 1.0/(nth 0 ys))
(y12 (nth 1 ys))
(z2 1.0/(nth 3 ys))
(f (xval z1))
(C1 (-1.0/(imag z1))/(2*3.14159265358979*f))
(C12 -(imag y12)/(2*3.14159265358979*f))
(C2 (-1.0/(imag z2))/(2*3.14159265358979*f))
(Q1 -(imag z1)/(real z1))
(Q12 (imag y12)/(real y12))
(Q2 -(imag z2)/(real z2)))
`((,C1) (,Q1) (,C12))))
'(("Cse") ("Qse") ("C12"))))

We define Port-1 impedance \(Z_1\), Port-2 impedance \(Z_2\)

\[\begin{align} Z_1 &= \frac {1}{Y_{11}}\\ Z_2 &= \frac {1}{Y_{22}} \end{align}\]

Then single-ended cap and Q \[\begin{align} C_1 &= -\frac{1/Im(Z_1)}{2\pi f} \\ Q_1 &= -\frac{Im(Z_1)}{Re(Z_1)} \\ C_2 &= -\frac{1/Im(Z_2)}{2\pi f} \\ Q_2 &= -\frac{Im(Z_2)}{Re(Z_2)} \\ C_{12} &= -\frac{Im(Y_{12})}{2\pi f}\\ Q_{12} &= \frac{Im(Y_{12})}{Re(Y_{12})} \end{align}\]

  • Series equivalent model is used in \(C_1\), \(Q_1\), \(C_2\) and \(Q_2\)
    • \(Z_1 = R + \frac{1}{sC_1}\) and \(Z_2 = R + \frac{1}{sC_2}\)
  • Parallel model is used in \(C_{12}\) and \(Q_{12}\)
    • \(Y_{12} = \frac{1}{R} + sC_{12}\)

EMX plot \(C_{se}\), \(Q_{se}\) and \(C_{12}\), i.e. \(C_1\), \(Q_1\) and \(C_{12}\)

image-20220331020334023

Differential cap

1
2
3
4
5
6
7
8
9
10
11
(define (EMX_plot_diff_cap bgui wid what)
(EMX_plot_aux bgui wid what 2
'("Differential capacitance" "Differential Q")
'("Farad" "")
(lambda (ys)
(letseq ((z (apply EMX_differential ys))
(f (xval z))
(C (-1.0/(imag z))/(2*3.14159265358979*f))
(Q -(imag z)/(real z)))
`((,C) (,Q))))
'(("C") ("Q"))))

First obtain differential impedance, \(Z_{diff}\) then apply series equivalent model \[\begin{align} C_{diff} &= -\frac{1/Im(Z_{diff})}{2\pi f} \\ Q_{diff} &= -\frac{Im(Z_{diff})}{Re(Z_{diff})} \end{align}\]

image-20220331022224865

Tline

Open circuit impedance \(Z_o\), short circuit impedance \(Z_s\) and characteristic impedance \(Z_0\)

\[\begin{align} Z_o &= Z_{11}\\ Z_s &= \frac{1}{Y_{11}}\\ Z_0 &= \sqrt{Z_o*Z_s} \end{align}\]

propagation constant is given as \[\begin{align} \gamma &= \frac{1}{2}\log\left( \frac{Z_0+Z_s}{Z_0-Z_s} \right) \\ &= \alpha + j\beta \end{align}\] where \(\alpha\) is attenuation constant and \(\beta\) is phase constant

The relationship between these parameter and geometry of the transmission line \[\begin{align} Z_0 &= \sqrt{\frac{R+j\omega L}{G+j\omega C}} \\ \gamma &= \sqrt{(G+j\omega C)(R+j\omega L)} \end{align}\] EMX plot the real and imaginary part of \(Z_0\), \(\alpha\) and \(\beta\) of \(\gamma\)

Note EMX plot the absolute value of \(\alpha\) and \(\beta\)

image-20220630215343377image-20220630215418372

image-20220630215630849

Transformer

image-20231015002344332

image-20231015002403566

[IC Prophet GDSII 文件使用和仿真测试说明]

EMX autoplot

using AC simulation, and inductor's parallel model or series model

That is to say: both sp (network parameter) and ac (impedance) can be used to plot inductance, Q value.

usually EMX choose ac method

image-20220501173856442

image-20220501173930035

left 2 figures are used for AC simulation, \(Y_{nn}\) can be obtained conveniently

Foundary model

image-20221217141519947

for single-end capicator \[\begin{align} Q_1 &= -\frac{Im(Z_1)}{Re(Z_1)} \\ &= -\frac{Im(1/Y_{11})}{Re(1/Y_{11})} \\ &= -\frac{Im(Y_{11}^*)/|Y_{11}|^2}{Re(Y_{11}^*)/|Y_{11}|^2} \\ &= \frac{Im(Y_{11})}{Re(Y_{11})} \end{align}\]

So, the EMX model and foundary model is consistent.

Tips

Process file encryption mostly for advanced nodes, like TSMC 16nm Finfet, whose process file is encrypted.

  • Use --key=EMXkey in the EMX Advanced options

GDSviewer has two options

  • EMX: shows the final gds sent to EMX for simulation after it has been processed by EMX
  • Raw: shows the raw gds

If there are port name with the # sign, it means EMX sees a port but it is not in the signal list.

EMX Accuracy

  • Edge mesh: controls layout discretization in the X-Y plane

    • For MoM capacitors, use the edge mesh to be the same as the width of the finger (for example, 0.1um).
  • Thickness: controls layout discretization in the Z dimension

  • 3D metals: skips all 2D assumptions about conductors and their currents and charges

    • If you set 3D metals to * then all metals are treated as 3D
      • For Inductor type structures, only thick metal needs 3D.
      • For MoM, all layers are needed.

Ports entered in Grounds will cause these nets to be grounded; these ports will not show up in the S-parameter result.

Setup Temperature

  • EMX: --temperature=100

ParaView

  • If check ParaView related options when ParaView is not setup properly, EMX simulation stop at Creating mesh... without waring or errors (version 6.2).

reference

Tips on Specifying Ports in EMX [link]

Using 'Cadence pins' as ports with access direction in EMX simulations [[link](Article (20496398) Title: Using 'Cadence pins' as ports with access direction in EMX simulations URL: https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1O3w00000AH2OfEAL)]

uvm_reg_field

There are no properties for unused or reserved fields, and unlike register arrays

ralf

  • bytes: the register size, default is N*8 > all field
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
register CTRL {
left_to_right;
field unused {bits 6;}
field HC1R {
bits 1; access rw ;
coverpoint { bins x = {0,1}}
}
field HC1E {bits 1 ; access rw }
field unused {bits 2; }
field HC0R {bits 1; access rw }
field HCOE {bits 1 ; access rw }
field unused {bits 2; }
field BL {bits 1; access rw }
field CSL {bits 1 ; access rw}
field VSL {bits 1 ; access rw}
field HSL {bits 1 ; access rw}
field PC {bits 1 ; access rw}
field CD {bits 2 ; access rw}
field VBL {bits 2 ; access rw}
field CBSWE {bits 1 ; access rw}
field VBSWE {bits 1 ; access rw}
field CBSIE {bits 1 ; access rw}
field VBSIE {bits 1 ; access rw}
field HIE {bits 1 ; access rw}
field VIE {bits 1 ; access rw}
field VEN {bits 1 ; access rw}
}

generated sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function void build();
this.HC1R = uvm_reg_field::type_id::create("HC1R",,get_full_name());
this.HC1R.configure(this, 1, 23, "RW", 0, 1'h0, 0, 0, 0);
this.HC1E = uvm_reg_field::type_id::create("HC1E",,get_full_name());
this.HC1E.configure(this, 1, 22, "RW", 0, 1'h0, 0, 0, 0);
this.HC0R = uvm_reg_field::type_id::create("HC0R",,get_full_name());
this.HC0R.configure(this, 1, 19, "RW", 0, 1'h0, 0, 0, 0);
this.HCOE = uvm_reg_field::type_id::create("HCOE",,get_full_name());
this.HCOE.configure(this, 1, 18, "RW", 0, 1'h0, 0, 0, 0);
this.BL = uvm_reg_field::type_id::create("BL",,get_full_name());
this.BL.configure(this, 1, 15, "RW", 0, 1'h0, 0, 0, 0);
this.CSL = uvm_reg_field::type_id::create("CSL",,get_full_name());
this.CSL.configure(this, 1, 14, "RW", 0, 1'h0, 0, 0, 0);
this.VSL = uvm_reg_field::type_id::create("VSL",,get_full_name());
this.VSL.configure(this, 1, 13, "RW", 0, 1'h0, 0, 0, 0);
this.HSL = uvm_reg_field::type_id::create("HSL",,get_full_name());
this.HSL.configure(this, 1, 12, "RW", 0, 1'h0, 0, 0, 0);
this.PC = uvm_reg_field::type_id::create("PC",,get_full_name());
this.PC.configure(this, 1, 11, "RW", 0, 1'h0, 0, 0, 0);
this.CD = uvm_reg_field::type_id::create("CD",,get_full_name());
this.CD.configure(this, 2, 9, "RW", 0, 2'h0, 0, 0, 0);
this.VBL = uvm_reg_field::type_id::create("VBL",,get_full_name());
this.VBL.configure(this, 2, 7, "RW", 0, 2'h0, 0, 0, 0);
this.CBSWE = uvm_reg_field::type_id::create("CBSWE",,get_full_name());
this.CBSWE.configure(this, 1, 6, "RW", 0, 1'h0, 0, 0, 0);
this.VBSWE = uvm_reg_field::type_id::create("VBSWE",,get_full_name());
this.VBSWE.configure(this, 1, 5, "RW", 0, 1'h0, 0, 0, 0);
this.CBSIE = uvm_reg_field::type_id::create("CBSIE",,get_full_name());
this.CBSIE.configure(this, 1, 4, "RW", 0, 1'h0, 0, 0, 0);
this.VBSIE = uvm_reg_field::type_id::create("VBSIE",,get_full_name());
this.VBSIE.configure(this, 1, 3, "RW", 0, 1'h0, 0, 0, 0);
this.HIE = uvm_reg_field::type_id::create("HIE",,get_full_name());
this.HIE.configure(this, 1, 2, "RW", 0, 1'h0, 0, 0, 0);
this.VIE = uvm_reg_field::type_id::create("VIE",,get_full_name());
this.VIE.configure(this, 1, 1, "RW", 0, 1'h0, 0, 0, 0);
this.VEN = uvm_reg_field::type_id::create("VEN",,get_full_name());
this.VEN.configure(this, 1, 0, "RW", 0, 1'h0, 0, 0, 0);
endfunction: build

uvm_reg_block

ralf

  • bytes : bus width
1
2
3
4
5
6
7
8
9
10
11
block vga_lcd  {
bytes 4;
endian little;

register STAT (`RAL_HDL_PATH.wbs.stat[31:0]) @0004;
register HTIM (`RAL_HDL_PATH.htim[31:0]) @0008;
register CTRL (`RAL_HDL_PATH.wbs.ctrl[31:0]) @00010;
register VTIM (`RAL_HDL_PATH.vtim[31:0]) @0012;
register C1CR (`RAL_HDL_PATH.c1cr[31:0]) @0016;
memory CLUT1 @'h0C00;
}

generated sv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
this.default_map = create_map("", 0, 4, UVM_LITTLE_ENDIAN, 0);

this.STAT = ral_reg_STAT::type_id::create("STAT",,get_full_name());
this.STAT.configure(this, null, "");
this.STAT.build();
this.STAT.add_hdl_path('{ '{"wbs.stat[31:0]", -1, -1}});
this.default_map.add_reg(this.STAT, `UVM_REG_ADDR_WIDTH'h4, "RW", 0);

this.HTIM = ral_reg_HTIM::type_id::create("HTIM",,get_full_name());
this.HTIM.configure(this, null, "");
this.HTIM.build();
this.HTIM.add_hdl_path('{'{"htim[31:0]", -1, -1} });
this.default_map.add_reg(this.HTIM, `UVM_REG_ADDR_WIDTH'h8, "RW", 0);

this.CTRL = ral_reg_CTRL::type_id::create("CTRL",,get_full_name());
this.CTRL.configure(this, null, "");
this.CTRL.build();
this.CTRL.add_hdl_path('{'{"wbs.ctrl[31:0]", -1, -1} });
this.default_map.add_reg(this.CTRL, `UVM_REG_ADDR_WIDTH'hA, "RW", 0);

this.VTIM = ral_reg_VTIM::type_id::create("VTIM",,get_full_name());
this.VTIM.configure(this, null, "");
this.VTIM.build();
this.VTIM.add_hdl_path('{ '{"vtim[31:0]", -1, -1} });
this.default_map.add_reg(this.VTIM, `UVM_REG_ADDR_WIDTH'hC, "RW", 0);

this.C1CR = ral_reg_C1CR::type_id::create("C1CR",,get_full_name());
this.C1CR.configure(this, null, "");
this.C1CR.build();
this.C1CR.add_hdl_path('{ '{"c1cr[31:0]", -1, -1} });
this.default_map.add_reg(this.C1CR, `UVM_REG_ADDR_WIDTH'h10, "RW", 0);

this.CLUT1 = ral_mem_CLUT1::type_id::create("CLUT1",,get_full_name());
this.CLUT1.configure(this, "");
this.CLUT1.build();
this.default_map.add_mem(this.CLUT1, `UVM_REG_ADDR_WIDTH'hC00, "RW", 0);

1
2
3
4
5
6
7
class ral_reg_CTRL extends uvm_reg;
class ral_reg_STAT extends uvm_reg;
class ral_reg_HTIM extends uvm_reg;
class ral_reg_VTIM extends uvm_reg;
class ral_reg_C1CR extends uvm_reg;
class ral_mem_CLUT1 extends uvm_mem;
class ral_block_vga_lcd extends uvm_reg_block;

ralgen command

1
ralgen -uvm -t dut_regmodel0 vga_lcd_env.ralf

BYTE or HALFWORD access

User is verifying 32 bit registers and the design also allows the BYTE (8 bits) and HALFWORD (16 bits) accesses.

this is achieved by setting the bit_addressing=0 field in the uvm_reg_block::create_map function.

Using create_map in uvm_reg_block, you can change the type of addressing scheme you want to use; namely BYTE or HALFWORD.

create_map

1
2
3
4
5
virtual function uvm_reg_map create_map( string name,
uvm_reg_addr_t base_addr,
int unsigned n_bytes,
uvm_endianness_e endian,
bit byte_addressing)

Creates an address map with the specified name, then configures it with the following properties:

Parameter Description
base_addr It is the base address for the map. All registers, memories, and sub-blocks within the map will be at offsets to this address.
n_bytes It is the byte-width of the bus on which this map is used
endian It is the endian format. See uvm_endianness_e for possible values.
byte_addressing It specifies whether consecutive addresses referred are 1 byte apart (TRUE) or n_bytes apart (FALSE). Default is TRUE.
  • For HALFWORD addressing, you should call create_map the following way:
1
default_map = create_map(get_name(), 0, 2, UVM_LITTLE_ENDIAN, 0); // 32 bit registers offset are 0x00, 0x02, 0x04
  • For WORD addressing
1
default_map = create_map(get_name(), 0, 4, UVM_LITTLE_ENDIAN, 0); // 32 bit registers offset are 0x00, 0x01, 0x02
  • For BYTE addressing (default) :
1
default_map = create_map(get_name(), 0, 4, UVM_LITTLE_ENDIAN, 1); // 32 bit registers offset are 0x00, 0x04, 0x08
  • BYTE width and byte addressing
1
default_map = create_map(get_name(), 0, 1, UVM_LITTLE_ENDIAN, 1); // 32 bit registers offset are 0x00, 0x04, 0x08 

uvm_reg_block::create_map

Create an address map in this block

n_bytes - the byte-width of the bus on which this map is used

byte_addressing - specifies whether consecutive addresses refer are 1 byte apart (TRUE) or n_bytes apart (FALSE). Default is TRUE.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function uvm_reg_map uvm_reg_block::create_map(string name,
uvm_reg_addr_t base_addr,
int unsigned n_bytes,
uvm_endianness_e endian,
bit byte_addressing=1);

uvm_reg_map map;

if (this.locked) begin
`uvm_error("RegModel", "Cannot add map to locked model");
return null;
end

map = uvm_reg_map::type_id::create(name,,this.get_full_name());
map.configure(this,base_addr,n_bytes,endian,byte_addressing);

this.maps[map] = 1;
if (maps.num() == 1)
default_map = map;

return map;
endfunction

uvm_reg_map::add_reg

The register is located at the specified address offset from this maps configured base address.

The number of consecutive physical addresses occupied by the register depends on the width of the register and the number of bytes in the physical interface corresponding to this address map.

If unmapped is TRUE, the register does not occupy any physical addresses and the base address is ignored. Unmapped registers require a user-defined frontdoor to be specified.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function void uvm_reg_map::add_reg(uvm_reg rg,  
uvm_reg_addr_t offset,
string rights = "RW",
bit unmapped=0,
uvm_reg_frontdoor frontdoor=null);

if (m_regs_info.exists(rg)) begin
`uvm_error("RegModel", {"Register '",rg.get_name(),
"' has already been added to map '",get_name(),"'"})
return;
end

if (rg.get_parent() != get_parent()) begin
`uvm_error("RegModel",
{"Register '",rg.get_full_name(),"' may not be added to address map '",
get_full_name(),"' : they are not in the same block"})
return;
end

rg.add_map(this);

begin
uvm_reg_map_info info = new;
info.offset = offset;
info.rights = rights;
info.unmapped = unmapped;
info.frontdoor = frontdoor;
m_regs_info[rg] = info;
end
endfunction

Register Defines

`UVM_REG_ADDR_WIDTH

Maximum address width in bits

Default value is 64. Used to define the type.

1
2
3
`ifndef UVM_REG_ADDR_WIDTH
`define UVM_REG_ADDR_WIDTH 64
`endif

`UVM_REG_DATA_WIDTH

Maximum data width in bits

Default value is 64. Used to define the type.

1
2
3
`ifndef UVM_REG_DATA_WIDTH
`define UVM_REG_DATA_WIDTH 64
`endif

Generic RALF Features and IP-XACT Mapping

field

image-20220314212141988

register

addressOffset

a register has an addressOffset that describes the location of the register expressed in addressUnitBits as offset to the starting address of the containing addressBlock or the containing registerFile

addressUnitBits

The addressUnitBits element describes the number of bits of an address increment between two consecutive addressable units in the addressSpace. If addressUnitBits is not described, then its value defaults to 8, indicating a byte-addressable addressSpace

image-20220314212217722

block

image-20220314212251012

memory

image-20220314212427347

Reference

UVM Register Abstraction Layer Generator User Guide, S-2021.09-SP1, December 2021

User guide for the IEEE 1685 Standard for IP-XACT

transient noise and rms_jitter function

image-20220608233610066

image-20220313230930333

RJ(rms): single Edge or Both Edge?

RJ(seed): what is it?

phase noise method

Directly compare the input phase noise and output phase noise, the input waveform maybe is the PLL output or other clock distribution end point

Jitter Impulse Response(JIR) & Jitter Impulse Response(JIR)

image-20220313231013645

image-20220313231027512

image-20220313231038542

Example

Low Pass Filter

image-20220322124344158

1
2
3
4
5
6
7
8
9
10
11
N = 32;
x = zeros(N,1);
x(1) = 6;
x(2) = -2;
x(3) = 0.5;
x = x/5;
figure(1)
stem(x)
Y = fft(x, N);
figure(2)
plot(abs(Y(1:N/2)));

image-20220322124902394

image-20220322124932584

High Pass Filter

image-20220327010223664

1
2
3
4
5
6
7
8
9
10
11
12
N = 128;
j_hp = zeros(N, 1);
j_hp(1)= 1;
j_hp(2) = 0.5;
j_hp(3) = -0.3;
j_hp(4) = 0.3;
j_hp(5) = -0.1;
jtf_hp = abs(fft(j_hp));
semilogx(jtf_hp(1:N/2+1));
xlabel('Freq');
ylabel('Jitter Amplification Factor');
grid on;

image-20220327010421475

inverter chain

image-20220608232251056

image-20220608232658054

image-20220608232438188

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ji = 1e-12; % 1ps
data = importdata('/path/to/jir.csv');
jo = data.data(:, 2);
Ts = 31.25e-12;
Fs = 1/Ts;
jir = jo/ji;
N = 2^(nextpow2(length(jir)-1));
Y = fft(jir, N);
jtf = abs(Y(1:N/2+1));
freqs= Fs/N*(0:N/2);
plot(feqs/1e9, jtf, 'linewidth', 2);
grid on;
xlabel('Freq (GHz)');
ylabel('JTF');
title('JTF of inverter chain');

image-20220608233303576

Reference

Sam Palermo, ECEN 720, Lecture 13 - Forwarded Clock Deskew Circuits

B. Casper and F. O'Mahony, "Clocking Analysis, Implementation and Measurement Techniques for High-Speed Data Links—A Tutorial," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 1, pp. 17-39, Jan. 2009, doi: 10.1109/TCSI.2008.931647.

Phase-Locked Frequency Generation and Clocking : Architectures and Circuits for Modern Wireless and Wireline Systems by Woogeun Rhee (2020, Hardcover)

Mathuranathan Viswanathan, Digital Modulations using Matlab : Build Simulation Models from Scratch

Tony Chan Carusone, University of Toronto, Canada, 2022 CICC Educational Sessions "Architectural Considerations in 100+ Gbps Wireline Transceivers"

0%