Precision Techniques
Autozeroing
offset is sampled and then subtracted from the input
Measure the offset somehow and then subtract it from the input signal
low gain comparator
Residual Noise of Auto-zeroing
pnosie Noise Type: timeaverage
Chopping
offset is modulated away from the signal band and then filtered out
Modulate the offset away from DC and then filter it out
Good: Magically reduces offset, 1/f noise, drift
Bad: But creates switching spikes, chopper ripple and other artifacts …
Chopping in the Frequency Domain
Square-wave Modulation
definition of convolution \(y(t) = x(t)*h(t)= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\)
for real signal \(H(j\omega)^*=H(-j\omega)\)
\[ H(j\hat{\omega})*H(j\hat{\omega}) = \int_{-\infty}^{\infty}H(j\omega)H(j(\hat{\omega}-\omega))d\omega \]
The Fourier Series of squarewave \(x(t)\) with amplitudes \(\pm 1\), period \(T_0\)
\[ C_n = \left\{ \begin{array}{cl} 0 &\space \ n=0 \\ 0 &\space \ n=\text{even} \\ |\frac{2}{n\pi}| &\space n=\pm 1,\pm 5,\pm9, ... \\ -|\frac{2}{n\pi}| &\space n=\pm 3,\pm 7,\pm11, ... \end{array} \right. \]
The Fourier transform of \(s(t)=x(t)x(t)\), and we know \[\begin{align} S(j2n\omega_0) &= \frac{1}{2\pi}\int X(j(2n\omega_0 -\omega))X(j\omega) d\omega\\ &= \frac{1}{2\pi}\int X(j(\omega-2n\omega_0))X(j\omega) d\omega \end{align}\]
Therefore \(n=0\) \[ S(j0) = \frac{1}{2\pi} (2\pi)^2\cdot \frac{4}{\pi ^2}2\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2} \delta(\omega) = 2\pi \delta(\omega) \]
if \(n=1\)
\[\begin{align} S(j2\omega_0) &= \frac{1}{2\pi} (2\pi)^2\cdot \frac{4}{\pi ^2}\left(1 - 2\sum_{n=0}^{+\infty}\frac{1}{(2n+1)(2n+3)} \right) \\ &= \frac{1}{2\pi} (2\pi)^2\cdot \frac{4}{\pi ^2}\left(1 - 2\sum_{n=0}^{+\infty}\frac{1}{2}\left[\frac{1}{2n+1}- \frac{1}{2n+3}\right] \right) \\ &= 0 \end{align}\]
\(n=2\) \[\begin{align} \sum &= -\frac{2}{3} + 2\left(\frac{1}{1\times 5}+ \frac{1}{3\times 7}+ \frac{1}{5\times 9} + \frac{1}{7\times 11}+...\right) \\ &= -\frac{2}{3} + 2\cdot \frac{1}{4}\left(\frac{1}{1}-\frac{1}{5}+ \frac{1}{3}- \frac{1}{7}+ \frac{1}{5} - \frac{1}{9} +\frac{1}{7}-\frac{1}{11}+...\right) \\ &= -\frac{2}{3} + 2\cdot \frac{1}{4}\frac{4}{3} = 0 \end{align}\]
That is, the input signal remains the same after chopping or squarewave up/down modulation
EXAMPLE 2.7 in R. E. Ziemer and W. H. Tranter, Principles of Communications, 7th ed., Wiley, 2013 [pdf]
Prove that \(\pi^2/8 = 1 + 1/3^2 + 1/5^2 + 1/7^2 + \cdots\) [https://math.stackexchange.com/a/2348996]
Bandwidth & Gain Accuracy
lower effective gain: DC level at the output of the amplifiers is a bit less than what it should be
chopping artifacts at the even harmonics: frequency of output is \(2f_{ch}\)
Below we justify \(A_\text{eff} = A(1-4\tau/T_\text{ch})\) \[\begin{align} V_o(t) &= A + (V_0-A)e^{-t/\tau} \\ V_o(T/2) &= -V_0 \end{align}\]
then \[ V_0 = -A\frac{1-e^{-T/2\tau}}{1+e^{-T/2\tau}} \] Then DC level is \[ A_\text{eff} = \frac{1}{T/2}\int_0^{T/2} V_o(t)dt = A\left(1-\frac{4\tau}{T}\cdot \frac{1-e^{-T/2\tau}}{1+e^{-T/2\tau}}\right)\approx A\left(1-\frac{4\tau}{T}\right) \]
where assuming \(\tau \ll T\)
REF. [https://raytroop.github.io/2023/01/01/insight/#rc-charge-and-discharge]
Residual Offset of Chopping
assume input spikes can be expressed as \[ V_\text{spike}(t) = V_o e^{-\frac{t}{\tau}} \]
Then, residual offset is
\[\begin{align} \overline{V_\text{os}} &= \frac{2\int_0^{T_{ch}/2}V_\text{spike}(t)dt}{T_{ch}} \\ &= 2f_{ch}V_o\int_0^{T_{ch}/2} e^{-\frac{t}{\tau}}dt\\ &= 2f_{ch}V_o\tau\int_0^{T_{ch}/2\tau} e^{-\frac{t}{\tau}}d\frac{t}{\tau} \\ &\approx 2f_{ch}V_o\tau \end{align}\]
Ripple Cancellation after Chopping
On-chip analog filter is not good enough due to limited cutoff frequency
TODO 📅
Dynamic Element Matching (DEM)
TODO 📅
Galton, Ian. (2010). Why dynamic-element-matching DACs work. Circuits and Systems II: Express Briefs, IEEE Transactions on. 57. 69 - 74. 10.1109/TCSII.2010.2042131. [https://sci-hub.se/10.1109/TCSII.2010.2042131]
KHIEM NGUYEN. Analog Devices Inc, "Practical Dynamic Element Matching Techniques for 3-level Unit Elements" [https://picture.iczhiku.com/resource/eetop/shihEDaaoJjFdCVc.pdf]
reference
C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," in Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996, doi: 10.1109/5.542410. [http://www2.ing.unipi.it/~a008309/mat_stud/MIXED/archive/2019/Articles/Offset_canc_Enz_Temes_96.pdf]
Kofi Makinwa. Precision Analog Circuit Design: Coping with Variability, [https://youtu.be/nA_DZtRqrTQ?si=6uyOpJhdnYm3iG9d] [https://youtu.be/uwRpP20Lprc?si=SGPta86jRCdECSob]
Chung-chun Chen, Why Design Challenge in Chopping Offset & Flicker Noise? [https://youtu.be/ydjca2KrXgc?si=2raCIB99vXriMPsq]
—, Why Needs A Low Ripple after Chopping Amplifier for A Very Low DC Offset & Flicker Noise? [https://youtu.be/y7TzJtHE7IA?si=kUeP_ESofVxp3IT_]
Qinwen Fan, Evolution of precision amplifiers
Kofi Makinwa, ISSCC 2007 Dynamic-Offset Cancellation Techniques in CMOS [https://picture.iczhiku.com/resource/eetop/sYkywlkpwIQEKcxb.pdf]
Axel Thomsen, Silicon Laboratories ISSCC2012Visuals-T8: "Managing Offset and Flicker Noise" [slides,transcript]