Frequency Domain Model

f-mdl.drawio

image-20250903212048962

Skew (Timing Mismatch) Calibration

TODO ๐Ÿ“…

M. Gu, Y. Tao, Y. Zhong, L. Jie and N. Sun, "Timing-Skew Calibration Techniques in Time-Interleaved ADCs," in IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 1-10, 2025 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804623]

S. Chen, L. Wang, H. Zhang, R. Murugesu, D. Dunwell, A. Chan Carusone, โ€œAll-Digital Calibration of Timing Mismatch Error in Time-Interleaved Analog-to-Digital Converters,โ€ IEEE Transactions on VLSI Systems, Sept. 2017. [PDF, slides]

B. Razavi, "Problem of timing mismatch in interleaved ADCs," Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, USA, 2012 [https://www.seas.ucla.edu/brweb/papers/Conferences/BRCICC12.pdf]

resync (alignment)

TODO ๐Ÿ“…

Multi-Phase Clock Generation (MPCG)

TODO ๐Ÿ“…

image-20250611222614434

Interleaver

image-20250621094704819

Direct Interleaver

image-20250621101542418

similar to increase the resolution of the flash ADC with more parallel comparators

De-multiplexing Interleaver

image-20250621103205333

it is the front-end samplers that determine timing/bandwidth mismatch errors

Re-sampling Interleaver

image-20250621111119041

back-end re-sampling occur after the front-end, two \(\frac{KT}{C}\) contribution in total noise (De-multiplexing Interleaver only one \(\frac{KT}{C}\))

without buffer, charging distribution reduce signal and reduce SNR, but buffers give excess noise

Interleaver Model

image-20250621112657111

Interleaving Errors

image-20250621072540691

image-20250621093552545

Offset Mismatch Error

image-20250621072621033

Gain Mismatch Error

image-20250621072824275

image-20250621072944516

Timing Mismatch Error

image-20250621090407014

\(\pi/2\)-rad phase: the maximum error occurs at the zero crossing and not on the peaks (Gain Mismatch error)

Frequency-dependent: the higher frequency input signal \(f_\text{in}\), the larger error becomes

image-20250621091024424

image-20250621091047339

\(\pi/2\) phase shift \[ e^{j\pi/2} = j \] frequency-dependent \[ V^{'} \propto f \]

In time domain \[ \frac{d\sin(\omega t)}{dt} = \omega \cos(\omega t) \propto \omega \]

Bandwidth Mismatch Errors

image-20250621092214162

image-20250621093321623

Overlapping versus Non-overlapping track time

image-20250611224418950

tracking accuracy stay same, Cin (2Cs) counteract the longer tracking

Summing Interleaved Alias

image-20240929215841300

The sampling function - impulse train is \[ s(t) = \sum_{n=-\infty}^{\infty}\left[ \delta(t-n4T_s) + \delta(t-n4T_s-T_s) + \delta(t-n4T_s-2T_s) + \delta(t-n4T_s-3T_s)\right] \]

Its Fourier transform is \[\begin{align} S(f) &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left[\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 2T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 3T_s}\delta(f-k\frac{f_s}{4}) \right] \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-j2\pi\frac{f}{f_s}} + e^{-j4\pi\frac{f}{f_s}} + e^{-j6\pi\frac{f}{f_s}} \right) \delta(f-k\frac{f_s}{4}) \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}} \right) \delta(f-k\frac{f_s}{4}) \end{align}\]

We define \(M[k] = 1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}}\), which is periodic, i.e. \(M[k]=M[k+4]\) \[ M[k]=\left\{ \begin{array}{cl} 4 & : \ k = 4m \\ 0 & : \ k=4m+1 \\ 0 & : \ k=4m+2 \\ 0 & : \ k=4m+3 \\ \end{array} \right. \]

That is \[ S(f) = \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta(f-kf_s) \]

Alias has same frequency for each slice but different phase: Alias terms sum to zero if all slices match exactly

Random Chopping in TI-ADC

image-20240929215927957

\[ D_n(kT) = (G_n R(kT) V(kT) + O_n)R(kT)= C_n V(kT) + R(kT)O_n \]

ADC buffers & memory effect

Y. Shifman, Y. Krupnik, U. Virobnik, A. Khairi, Y. Sanhedrai and A. Cohen, "A 1.64mW Differential Super Source-Follower Buffer with 9.7GHz BW and 43dB PSRR for Time-Interleaved ADC Applications in 10nm," 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC), Macau, Macao, 2019 [pdf]

E. -H. Chen et al., "7.1 A 212.5Gb/s DSP-Based PAM-4 Transceiver with 50dB Loss Compensation for Large AI System Interconnects in 4nm FinFET," 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2025

TODO ๐Ÿ“…

Paper from industry

Z. Guo et al., "A 112.5Gb/s ADC-DSP-Based PAM-4 Long-Reach Transceiver with >50dB Channel Loss in 5nm FinFET," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022 [https://sci-hub.st/10.1109/ISSCC42614.2022.9731650]

image-20250806224145281

8way-interleaving-Marvell-ISSCC2022.drawio


P. Liu et al., "A 128Gb/s ADC/DAC Based PAM-4 Transceiver with >45dB Reach in 3nm FinFET," 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2025

image-20250808220954208

image-20250808221134749

RX-Clocking-Marvell-VLSI2025.drawio


ISSCC.2024 7.3 A 224Gbs 3pJb 40dB Insertion Loss Transceiver in 3nm FinFET CMOS [7.3 A 224Gbs 3pJb 40dB Insertion Loss Transceiver in 3nm FinFET CMOS https://www.bilibili.com/video/BV18hYCe7E45/?share_source=copy_web&vd_source=5a095c2d604a5d4392ea78fa2bbc7249]

ISSCC.2018 6.4 A Fully Adaptive 19-to-56Gb/s PAM-4 Wireline Transceiver with a Configurable ADC in 16nm FinFET [https://sci-hub.st/10.1109/ISSCC.2018.8310207]

M. S. Jalali, A. Sheikholeslami, M. Kibune and H. Tamura, "A Reference-Less Single-Loop Half-Rate Binary CDR," in IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2037-2047, Sept. 2015 [https://www.eecg.utoronto.ca/~ali/papers/jssc2015-09.pdf]

Pisati, et.al., "Sub-250mW 1-to-56Gb/s Continuous-Range PAM-4 42.5dB IL ADC/DAC- Based Transceiver in 7nm FinFET," 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019 [https://sci-hub.se/10.1109/ISSCC.2019.8662428]

reference

John P. Keane, ISSCC2020 T5: "Fundamentals of Time-Interleaved ADCs" [https://www.nishanchettri.com/isscc-slides/2020%20ISSCC/TUTORIALS/T5Visuals.pdf]

Yohan Frans, CICC2019 ES3-3- "ADC-based Wireline Transceivers" [pdf]

Samuel Palermo, ISSCC 2018 T10: ADC-Based Serial Links: Design and Analysis [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T10/T10Visuals.pdf]

ISSCC2015 F1: High-Speed Interleaved ADCs [https://picture.iczhiku.com/resource/eetop/wykrheUfrWasiMVX.pdf]

Poulton, Ken. ISSCC2009 "Time-Interleaved ADCs, Past and Future" (slides)

โ€”. CICC2010 "GHz ADCs: From Exotic to Mainstream", tutorial session, (slides)

โ€”. ISSCC2015 "Interleaved ADCs Through the Ages", (slides)

Ewout Martens. ESSCIRC 2019 Tutorials: Advanced Techniques for ADCs for 5G Massive MIMO [https://youtu.be/7hYichGGU6k]

Athanasios Ramkaj. January 26, 2022, IEEE SSCS Santa Clara Valley Section Technical Talk: Design Considerations Towards Optimal High-Resolution Wide-Bandwidth Time-Interleaved ADCs [https://youtu.be/k3jY9NtfYlY?si=K9AdT9QzGxOnI5WG]


Ahmed M. A. Ali 2016, "High Speed Data Converters" [pdf]

S. Jang, J. Lee, Y. Choi, D. Kim, and G. Kim, "Recent advances in ultra-high-speed wireline receivers with ADC-DSP-based equalizers," IEEE Open Journal of the Solid-State Circuits Society (OJ-SSCS), vol. 4, pp. 290-304, Nov. 2024.

Yida Duan. Design Techniques for Ultra-High-Speed Time-Interleaved Analog-to-Digital Converters (ADCs) [http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-10.pdf]

Preview Lecture #1 - "Extreme SAR ADCs" Online Course (2024) - Prof. Chi-Hang Chan (U. of Macau) [https://youtu.be/rgMRL4QZ-wA]

image-20250703212349339

speculative DFE is also known as loop unrolled DFE, which solve the critical timing on first tap


image-20250726092747147

VGA/attenuator: ensure a constant swing at the slicer input regardless of the channel variation


Inductive Peaking

TODO ๐Ÿ“…

series peaking: capacitive splitting - split the load capacitance between the amplifier drain capacitance and the next stage gate capacitance

S. Shekhar, J. S. Walling and D. J. Allstot, "Bandwidth Extension Techniques for CMOS Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006 [https://people.engr.tamu.edu/spalermo/ecen689_oi/2006_passive_bw_extension_techniques_shekhar_jssc.pdf]

CTLE Linearity

TODO ๐Ÿ“… image-20250726180642570

Front-End Noise

https://people.engr.tamu.edu/spalermo/ecen689/lecture6_ee720_rx_circuits.pdf

image-20250726180326659

image-20250726181859362

DFE Error Propagation

TODO ๐Ÿ“…

image-20250609201647012

Geoff Zhang. Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems [https://www.ieee802.org/3/ck/public/18_09/zhang_3ck_01a_0918.pdf]

CTLE transfer function

image-20250609201257138

Circuit Insights @ ISSCC2025: Circuits for Wireline Communications - Kevin Zheng [https://youtu.be/8NZl81Dj45M?si=J11oGnXnkJYPUi2n&t=1045]

DFE architecture

image-20250609201522455

image-20250607235201147

Extensive work on DFEs has produced a multitude of architectures, which can be broadly categorized as "direct"" or "unrolled" (speculative) DFEs with "full-rate" or "half-rate" clocking

image-20250608000306928

image-20250608000338808

image-20250608000357010

S. Ibrahim and B. Razavi, "Low-Power CMOS Equalizer Design for 20-Gb/s Systems," in IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1321-1336, June 2011 [https://sci-hub.se/10.1109/JSSC.2011.2134450]

S. Ibrahim and B. Razavi, Low-Power DFE Design [https://picture.iczhiku.com/resource/eetop/wykflwIuIQDzYNcB.PDF]

PAM4 DFE

image-20250525202236767

image-20250525210606180

image-20250525221556845

image-20250525221432513

image-20250525221148218

K. -C. Chen, W. W. -T. Kuo and A. Emami, "A 60-Gb/s PAM4 Wireline Receiver With 2-Tap Direct Decision Feedback Equalization Employing Track-and-Regenerate Slicers in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 56, no. 3, pp. 750-762, March 2021 [https://www.mics.caltech.edu/wp-content/uploads/2021/02/JSSC-2020-Xavier-PAM4-Receiver.pdf]

Hongtao Zhang, DesignCon 2016. PAM4 Signaling for 56G Serial Link Applications โˆ’ A Tutorial [https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf]

reference

Miguel Gandara, MediaTek. CICC 2025 Circuit Insights: Basics of Wireline Receiver Circuits [https://youtu.be/X4JTuh2Gdzg]

Tony Chan Carusone, Alphawave Semi. VLSI2025 SC2: Connectivity Technologies to Accelerate AI

H. Park et al., "7.4 A 112Gb/s DSP-Based PAM-4 Receiver with an LC-Resonator-Based CTLE for >52dB Loss Compensation in 4nm FinFET," 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2025

Noman Hai, Synopsys, Canada CASS Talks 2025 - May 2, 2025: High-speed Wireline Interconnects: Design Challenges and Innovations in 224G SerDes [https://www.youtube.com/live/wHNOlxHFTzY]

image-20250607092632549

1UI Data Staggering

TODO ๐Ÿ“…

1UI Pulse Generator

duty correction & delay adjustment

TODO ๐Ÿ“…

DAC Driver SNDR

TODO ๐Ÿ“…

Eye Linearity vs. RLM (Relative Level Mismatch)

TODO ๐Ÿ“…

Chaowaroj (Max) Wanotayaroj. Introduction to PAM4 [https://indico.cern.ch/event/979659/contributions/4127016/attachments/2159338/3642883/PAM4Eval%20-%20Dec2020%20Seminar.pdf]

CML vs. SST based driver

image-20240825194548697

Design Challenges Of High-Speed Wireline Transmitters [https://semiengineering.com/design-challenges-of-high-speed-wireline-transmitters/]

image-20250607090928137

image-20250607091140352

the resistance of MOS is not highly controlled -> \(R_T + Z_N\)

image-20250607091858740

Peak power constraint of TX FIR

image-20250514215647905

Due to circuit limitation, circuit cannot have arbitrarily large voltage on the output, i.e. a limited maximum swing. In order to create the high frequency shape, the best we can do is lower DC gain (low frequency gain < 1)

  • FIR is not increasing the amplitude on the edges
  • FIR is reducing the inner eye diagram

The maximum swing stays the same, \(\sum_i |c_i|=1\)

Circuit Insights @ ISSCC2025: Circuits for Wireline Communications - Kevin Zheng [https://youtu.be/8NZl81Dj45M?si=2a8FdfGNP6yBgIW8&t=829]

SST Driver

sharing termination in SST transmitter

tx_leg.drawio

Sharing termination keep a constant current through leg, which improve TX speed in this way. On the other hand, the sharing termination facilitate drain/source sharing technique in layout.

pull-up and pull-down resistor

sst-evolution

Original stacked structure

Pro's:

โ€‹ smaller static current when both pull up and pull down path is on

Con's:

โ€‹ slowly switching due to parasitic capacitance behind pull-up and pull-down resistor

with single shared linearization resistor

Pro's:

โ€‹ The parasitic capacitance behind the resistor still exists but is now always driven high or low actively

Con's:

โ€‹ more static current

VM Driver Equalization - differential ended termination

\[ V_o = D_{n+1}C_{-1}+D_nC_0+D_{n-1}C_{+1} \]

where \(D_n \in \{-1, 1\}\)

vdrv.drawio \[ V_{\text{rx}} = V_{\text{dd}} \frac{(R_2-R_1)R_T}{R_1R_T+R_2R_T+R_1R_2} \] With \(R_u=(L+M+N)R_T\)

Normalize above equation, obtain \[ V_{\text{rx,norm}} = \frac{(R_2-R_1)R_T}{R_1R_T+R_2R_T+R_1R_2} \]

\(D_{n-1}\) \(D_{n}\) \(D_{n+1}\)
\(C_{-1}\) 1 -1 -1
\(C_0\) -1 1 -1
\(C_{+1}\) -1 -1 1

Where precursor \(R_L = L\times R_T\), main cursor \(R_M = M\times R_T\) and post cursor \(R_N = N\times R_T\)

image-20220709151054840

Equation-1

\(D_{n-1}D_nD_{n+1}=1,-1,-1\)

pre.drawio

\[\begin{align} R_1 &= R_N \\ &= \frac{R_u}{N} \\ R_2 &= R_L\parallel R_M \\ &= \frac{R_u}{L+M} \end{align}\]

We obtain \[ V_{L}= \frac{1}{2}\cdot\frac{N-(L+M)}{L+M+N} \]

Equation-2

\(D_{n-1}D_nD_{n+1}=-1,1,-1\)

main.drawio

with \(R_1=R_T\) and \(R_2=+\infty\), we obtain \[ V_M = \frac{1}{2} \]

Equation-3

\(D_{n-1}D_nD_{n+1}=-1,-1,1\)

\[\begin{align} R_1 &= R_L \\ &= \frac{R_u}{L} \\ R_2 &= R_N\parallel R_M \\ &= \frac{R_u}{N+M} \end{align}\]

We obtain \[ V_N = \frac{1}{2}\cdot\frac{L-(N+M)}{L+M+N} \]

Obtain FIR coefficients

We define \[\begin{align} l &= \frac{L}{L+M+N} \\ m &= \frac{M}{L+M+N} \\ n &= \frac{N}{L+M+N} \end{align}\]

where \(l+m+n=1\)

Due to Eq1 ~ Eq3 \[ \left\{ \begin{array}{cl} C_{-1}-C_0-C_1 & = \frac{1}{2}(n-l-m) \\ -C_{-1}+C_0-C_1 & = \frac{1}{2} \\ -C_{-1}-C_0+C_1 & = \frac{1}{2}(l-n-m) \end{array} \right. \] After scaling, we get \[ \left\{ \begin{array}{cl} C_{-1}-C_0-C_1 & = -l-m+n \\ -C_{-1}+C_0-C_1 & = l+m+n \\ -C_{-1}-C_0+C_1 & = l-m-n \end{array} \right. \] Then, the relationship between FIR coefficients and legs is clear, i.e. \[\begin{align} C_{-1} &= -\frac{L}{L+M+N} \\ C_{0} &= \frac{M}{L+M+N} \\ C_{1} &= -\frac{N}{L+M+N} \end{align}\]

For example, \(C_{-1}=-0.1\), \(C_0=0.7\) and \(C_1=-0.2\) \[ H(z) = -0.1+0.7z^{-1}-0.2z^{-2} \] image-20220709185832444

1
2
3
4
5
6
7
w = [-0.1, 0.7, -0.2];
Fs = 32e9;
[mag, w] = freqz(w, 1, [], Fs);
plot(w/1e9, abs(mag));
xlabel('Freq(GHz)');
ylabel('mag');
grid on;

VM Driver Equalization - single ended termination

Equation-1

pre_se.drawio

\[\begin{align} V_{\text{rxp}} &= \frac{1}{2} \cdot \frac{N}{L+M+N} \\ V_{\text{rxm}} &= \frac{1}{2} \cdot \frac{L+M}{L+M+N} \end{align}\] So \[ V_{L}= \frac{1}{2}\cdot\frac{N-(L+M)}{L+M+N} \] which is same with differential ended termination

Equation-2

main_se.drawio

\[\begin{align} V_{\text{rxp}} &= \frac{1}{2} \\ V_{\text{rxm}} &= 0 \end{align}\] So \[ V_{M}= \frac{1}{2} \] which is same with differential ended termination

Equation-3

\[ V_{N}= \frac{1}{2}\cdot\frac{L-(N+M)}{L+M+N} \]

Obtain FIR coefficients

Same with differential ended termination driver.

Basic Feed Forward Equalization Theory

image-20220709111229772

image-20220709112543338

image-20220709125046329

Pre-cursor FFE can compensate phase distortion through the channel

image-20220709130050057

Single-ended termination

Differential termination

TX Serializer

mux timing

mux2-1.drawio

divider latch timing

div2-latch.drawio

Two latches

two-latch.drawio

PAM4 TX

image-20220717010007963

Here, \(d_{\text{LSB}} \in \{-1, 1\}\), \(d_{\text{MSB}} \in \{-2, 2\}\) and \(d' \in \{ -3, -1, 1, 3 \}\)

Implementation-1 could potentially experience performance degradation due to

  1. Clock skew, \(\Delta t\), could make the eye misaligned horizontally
  2. Gain mismatch, \(\Delta G\), could cause eye nonlinearity
  3. Bandwidth mismatch, \(\Delta f_{\text{BW}}\), could make the eye misaligned vertically

image-20220717011129124

Typically, a 3-tap FIR (pre + main + post) TX de-emphasis is used

3-tap FIR results in \(4^3 = 64\) possible distinct signal levels

msb_lsb.drawio

\[\begin{align} R_U^M \parallel R_D^M &= \frac{3R_T}{2}\\ R_U^L \parallel R_D^L &= 3R_T \end{align}\]

Thevenin Equivalent Circuit is thevenin_1.drawio

Which can be simpified as thevenin_2.drawio \[\begin{align} V_{\text{rx}} &= \frac{1}{2}(V_p - V_m) \\ &= \frac{1}{2}(\frac{2}{3}(2V_{\text{MSB}}+V_{\text{LSB}})-1) \\ &=\frac{1}{3}(2V_{\text{MSB}}+V_{\text{LSB}})-\frac{1}{2} \end{align}\]

The above eqations demonstrate that the output \(V_{\text{rx}}\) is the linear sum of MSB and LSB; LSB and MSB have relative weight, i.e. 1 for LSB and 2 for MSB.

Assume pre cusor has \(L\) legs, main cursor \(M\) legs and post cursor \(N\) legs, which is same with the convention in "Voltage-Mode Driver Equalization"

The number of legs connected with supply can expressed as \[ n_{up} = (1-d_{n+1})L + d_{n}M + (1-d_{n-1})N \] Where \(d_n \in \{0, 1\}\), or \[ n_{up} = \frac{1}{2}(-D_{n+1}+1)L + \frac{1}{2}(D_{n}+1)M + \frac{1}{2}(-D_{n-1}+1)N \] Where \(D_n \in \{-1, +1\}\)

Then the number of legs connected with ground is \[ n_{dn}=L+M+N-n_{up} \] where \(n_{up}+n_{dn}=L+M+N\)

Voltage resistor divider \[\begin{align} V_o &= \frac{\frac{R_{U}}{n_{dn}}}{\frac{R_U}{n_{dn}}+\frac{R_U}{n_{up}}} \\ &= \frac{1}{2}- \frac{1}{2}D_{n+1}\frac{L}{L+M+N}+ \frac{1}{2}D_{n}\frac{M}{L+M+N}-\frac{1}{2}D_{n-1}\frac{N}{L+M+N} \\ &= \frac{1}{2}-\frac{1}{2}D_{n+1}\cdot l+ \frac{1}{2}D_{n}\cdot m-\frac{1}{2}D_{n-1}\cdot n \end{align}\]

where \(l+m+n=1\)

\(V_{\text{MSB}}\) and \(V_{\text{LSB}}\) can be obtained

\[\begin{align} V_{\text{MSB}} &= \frac{1}{2}-\frac{1}{2}D^{\text{MSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{MSB}}_{n}\cdot m-\frac{1}{2}D^{\text{MSB}}_{n-1}\cdot n \\ V_{\text{LSB}} &= \frac{1}{2}-\frac{1}{2}D^{\text{LSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{LSB}}_{n}\cdot m-\frac{1}{2}D^{\text{LSB}}_{n-1}\cdot n \end{align}\]

Substitute the above equation into \(V_{\text{rx}}\), we obtain the relationship between driver legs and FFE coefficients

\[\begin{align} V_{\text{rx}} &=\frac{1}{3}(2V_{\text{MSB}}+V_{\text{LSB}})-\frac{1}{2} \\ &= \frac{1}{3} \left\{ 2\left( \frac{1}{2}-\frac{1}{2}D^{\text{MSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{MSB}}_{n}\cdot m- \frac{1}{2}D^{\text{MSB}}_{n-1}\cdot n \right) + \left( \frac{1}{2}-\frac{1}{2}D^{\text{LSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{LSB}}_{n}\cdot m- \frac{1}{2}D^{\text{LSB}}_{n-1}\cdot n \right) \right\}-\frac{1}{2} \\ &= \left(-\frac{l}{6} \cdot 2 \cdot D^{\text{MSB}}_{n+1}+ \frac{m}{6} \cdot 2 \cdot D^{\text{MSB}}_{n}- \frac{n}{6} \cdot 2 \cdot D^{\text{MSB}}_{n-1}\right) + \left(-\frac{l}{6} \cdot D^{\text{LSB}}_{n+1}+ \frac{m}{6} \cdot D^{\text{LSB}}_{n}- \frac{n}{6} \cdot D^{\text{LSB}}_{n-1}\right) \\ &= -\frac{l}{6}(2 \cdot D^{\text{MSB}}_{n+1}+D^{\text{LSB}}_{n+1})+ \frac{m}{6}(2\cdot D^{\text{MSB}}_{n}+D^{\text{LSB}}_{n}) -\frac{n}{6}(2\cdot D^{\text{MSB}}_{n-1}+D^{\text{LSB}}_{n-1}) \end{align}\]

After scaling, we obtain \[ V_{\text{rx}} = -l\cdot(2 \cdot D^{\text{MSB}}_{n+1}+D^{\text{LSB}}_{n+1})+ m\cdot(2\cdot D^{\text{MSB}}_{n}+D^{\text{LSB}}_{n}) - n \cdot(2\cdot D^{\text{MSB}}_{n-1}+D^{\text{LSB}}_{n-1}) \] Where \(C_{-1} = l\), \(C_0 = m\) and \(C_{1}=n\), which is same with that of NRZ

Test Challenges

PAM4 Transmitter Test Challenges [https://harrisburg.psu.edu/files/pdf/16861/2019/05/06/tektronix_penn_state_si_april_12_2019.pdf]

PAM4 Signaling in High Speed Serial Technology: Test, Analysis, and Debug [https://download.tek.com/document/55W_60273_1_HR_Letter.pdf]

TODO ๐Ÿ“…

reference

Noman Hai, Synopsys. CICC 2025 Circuit Insights: Basics of Wireline Transmitter Circuits [https://youtu.be/oofViBGlrjM?si=WZnOqtDVG3iDnBHI]

โ€”, Synopsys. Design Challenges Of High-Speed Wireline Transmitters [https://semiengineering.com/design-challenges-of-high-speed-wireline-transmitters/]

โ€”, Synopsys. CMOS Circuit Techniques for Wireline Transmitters [https://www.synopsys.com/webinars/wireline-transmitters-part-1.html]

Jihwan Kim, CICC 2022, ES4-4: Transmitter Design for High-speed Serial Data Communications

โ€”, ISSCC2019 F5: Design Techniques for a 112Gbs PAM-4 Transmitter

Friedel Gerfers, ISSCC2021 T6: Basics of DAC-based Wireline Transmitters [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T6.pdf]

Tod Dickson, IBM. High-Speed CMOS Serial Transmitters for 56-112Gb/s Electrical Interconnects [https://www.youtube.com/watch?v=g1pcZabsRNc]

B. Razavi, "Design Techniques for High-Speed Wireline Transmitters," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 53-66, 2021, [https://www.seas.ucla.edu/brweb/papers/Journals/BROJSSCSep21.pdf]


Yvain Thonnart, CEA-LIST. ISSCC2021 T8: On-Chip Interconnects: Basic Concepts, Designs and Future Opportunities [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T8.pdf]

Mozhgan Mansuri. ISSCC2021 SC3: Clocking, Clock Distribution, and Clock Management in Wireline/Wireless Subsystems [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/SHORT%20COURSE/ISSCC2021-SC3.pdf]

Sam Palermo. High-Performance SERDES Design" Online Course (2025): Current-Mode DAC TX [https://youtu.be/A2VsvCPDWxk?si=14J7JC_bnejAlHGW]

PCIeยฎ 6.0 Specification: The Interconnect for I/O Needs of the Future PCI-SIGยฎ Educational Webinar Series, [https://pcisig.com/sites/default/files/files/PCIe%206.0%20Webinar_Final_.pdf]

J. F. Bulzacchelli et al., "A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Transceiver in 32-nm SOI CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3232-3248, Dec. 2012, doi: 10.1109/JSSC.2012.2216414.

C. Menolfi et al., "A 112Gb/S 2.6pJ/b 8-Tap FFE PAM-4 SST TX in 14nm CMOS," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 104-106, doi: 10.1109/ISSCC.2018.8310205.

E. Chong et al., "A 112Gb/s PAM-4, 168Gb/s PAM-8 7bit DAC-Based Transmitter in 7nm FinFET," ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), 2021, pp. 523-526, doi: 10.1109/ESSCIRC53450.2021.9567801.

Wang, Z., Choi, M., Lee, K., Park, K., Liu, Z., Biswas, A., Han, J., Du, S., & Alon, E. (2022). An Output Bandwidth Optimized 200-Gb/s PAM-4 100-Gb/s NRZ Transmitter With 5-Tap FFE in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 57(1), 21-31. https://doi.org/10.1109/JSSC.2021.3109562

J. Kim et al., "A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 102-104, doi: 10.1109/ISSCC.2018.8310204.

Gm-TIA CTLE

CTLE, with Gm + TIA structure

image-20250904202636824

Pisati, et.al., "Sub-250mW 1-to-56Gb/s Continuous-Range PAM-4 42.5dB IL ADC/DAC- Based Transceiver in 7nm FinFET," 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019 [https://sci-hub.se/10.1109/ISSCC.2019.8662428]

Z. Li, M. Tang, T. Fan and Q. Pan, "A 56-Gb/s PAM4 Receiver Analog Front-End With Fixed Peaking Frequency and Bandwidth in 40-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 9, pp. 3058-3062, Sept. 2021 [slides] [paper]

K. Kwon et al., "A 212.5Gb/s Pam-4 Receiver With Mutual Inductive Coupled Gm-Tia in 4nm Finfet," 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2025

Bae, W. (2019). CMOS Inverter as Analog Circuit: An Overview. Journal of Low Power Electronics and Applications. [pdf]


Chongyun ZHANG, 2025, "Energy-Efficient CMOS Optical Receiver for Short-Reach Data Center Application,". [slides, paper]

image-20251202222813043

image-20251202222831594

Equalization Shaping

PCIe Gen6 Channel and Reference Package S4P Models for Rx Stressed Eye Calibration

image-20251204005909804

Above curve demonstrate that only zero is not enough to compensate channel+pkg loss (>20 dB/decade), peaking or Complex-Conjugate Poles is necessary

image-20251204005738743


S. Shahramian et al., "30.5 A 1.41pJ/b 56Gb/s PAM-4 Wireline Receiver Employing Enhanced Pattern Utilization CDR and Genetic Adaptation Algorithms in 7nm CMOS," 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019 [pdf]

image-20251203231733124


P. A. Francese et al., "10.6 continuous-time linear equalization with programmable active-peaking transistor arrays in a 14nm FinFET 2mW/Gb/s 16Gb/s 2-Tap speculative DFE receiver," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2015 [pdf]

image-20251203232523501

Negative Capacitance Circuit

Negative Miller Capacitance

S. Gondi and B. Razavi, "Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers," in IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011 [pdf]

Sam Palermo. ECEN620 Lecture 14: Limiting Amplifiers (LAs) [https://people.engr.tamu.edu/spalermo/ecen620/lecture14_ee620_limiting_amps.pdf]

image-20251028221403199

image-20251028232644575 \[ C_{d1} = C_{dd1} + (1+\frac{1}{|A_{gd}|})C_{gd1} \] where \(A_{gd}\lt 0\)

image-20251028232707189

For differential mode input, effective input capacitance \[ C_{in} = C_{gs} +(1+A_{dm}) C_{gd}+\color{red}(1-A_{dm})C_n \] and effective output capacitance \[ C_{out} = C_{dd} + (1+\frac{1}{A_{dm}})C_{gd}+\color{red} (1-\frac{1}{A_{dm}})C_n \] That is \(C_n\) deteriorate the effective output capacitance

For common mode input, effective input capacitance \[ C_{in} = C_{gs} + (1+A_{cm}) C_{gd}+ \color{red}(1+A_{cm})C_n \] and effective output capacitance \[ C_{d1} = C_{dd} + (1+\frac{1}{A_{cm}})C_{gd}+\color{red} (1+\frac{1}{A_{cm}})C_n \] i.e., \(C_n\) deteriorate both effective input capacitance and effective output capacitance, unfortunately


effective input capacitance \(\Pi\) model, which is appropriate for both differential input and common mode input

nmc_pi_in.drawio

Suppose \(C_n=C_{gd}\), effective differential input capacitance is same with effective common-mode input capacitance (\(C_n=\frac{A_{dm}-A_{cm}}{A_{dm}+A_{cm}}C_{gd}\))

XCP with Capacitor

B. Razavi, "The Cross-Coupled Pair - Part III [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Issue. 1, pp. 10-13, Winter 2015. [https://www.seas.ucla.edu/brweb/papers/Journals/BR_Magzine3.pdf]

S. Galal and B. Razavi, "10-Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18um CMOS Technology,โ€ IEEE Journal of Solid-State Circuits, vol. 38, pp. 2138-2146, Dec. 2003.[https://www.seas.ucla.edu/brweb/papers/Journals/G&RDec03_2.pdf]

A. Sheikholeslami, "Bandwidth Extension [Circuit Intuitions]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 8-11, Spring 2015 [https://www.eecg.utoronto.ca/~ali/papers/mag-spr-15-bandwidth-extention.pdf]

The Cross-Coupled Pair (XCP) can operate as an impedance negator [a.k.a. a negative impedance converter (NIC)]

A common application is to create a negative capacitance that can cancel the positive capacitance seen at a port, thereby improving the speed

image-20240922174319496 \[ I_{NIC} =\frac{V_{im} - V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} = \frac{-2V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} \] Therefore \[ Z_{NIC} = \frac{V_{ip} - V_{im}}{I_{NIC}}=\frac{2V_{ip}}{I_{NIC}} =- \frac{2}{g_m}-\frac{1}{sC_c} \] half-circuit

If \(C_{gd}\) is considered, and apply miller effect. half equivalent circuit is shown as below

nic.drawio


image-20251204223338959

Equalization Noise Enhancement

Advanced Signal Integrity for High-Speed Digital Designs, S. H. Hall and H. L. Heck, John Wiley & Sons, 2009

image-20251021211402274

image-20250904235434247

Assuming \(\mathrm{SNR}(f) = \frac{S_x(f)}{S_n(f)}\)

input network

image-20250706110415914


image-20250611075951974

1
2
3
4
5
>> 10e6/2/pi/400/50

ans =

79.5775

shunt peaking

image-20251205235851272

image-20251206000303668

T-Coil Peaking

Jri Lee. ISSCC 2009 Tutorial. CMOS Circuit Techniques for High Speed Wireline Transceivers [http://cc.ee.ntu.edu.tw/~jrilee/course/2009_Tutorial_10.pdf]

Capacitor Splitting + Magnetic Coupling of a transformer

image-20251022234854155

image-20251022235133839

tcoil-tran.drawio


alternative analysis with the below 3 uncoupled inductors model

tcoil-tran-3L.drawio


Three uncoupled inductors model

image-20251126173130097

tcoil-Y.drawio \[\begin{align} V_{P13} &= I_1\cdot sL_1 + I_2\cdot sM = I_1\cdot s(L_1+M) + (I_1-I_2)\cdot s(-M) \\ V_{P23} &= -I_2\cdot sL_2 - I_1\cdot sM = -I_2\cdot s(L_2 + M) + (I_1-I_2)\cdot s(-M) \end{align}\]

The negative inductor \(-M\) can be seen as capacitor \[ -j\omega M = \frac{1}{j}\omega M = \frac{1}{j\omega \frac{1}{\omega^2 M}} \] That is \(C_{-M} = \frac{1}{\omega^2 M} \approx 10 \times C_E\)

Triple Resonance

TODO ๐Ÿ“…

image-20251206000718234

Active Inductor

B. Razavi, "The Active Inductor [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 12, no. 2, pp. 7-11, Spring 2020 [https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_2_2020.pdf]

activeInd

\[\begin{align} A &= \frac{g_mR_L}{1+(g_{\text{m}_{\text{dio}}}+ g_{\text{ds}_\text{tot}})R_L}\cdot \frac{1+R_pC_Ps}{1+\frac{(1+g_{\text{ds}_{\text{tot}}}R_L)R_PC_P+C_PR_L+R_LC_L}{1+(g_{\text{m}_{\text{dio}}}+g_{\text{ds}_\text{tot}})R_L}s + \frac{R_LC_LR_PC_P}{1+(g_{\text{m}_\text{dio}}+g_{\text{ds}_{\text{tot}}})R_L}s^2} \\ &= \frac{g_mR_L}{1+(g_{\text{m}_{\text{dio}}}+ g_{\text{ds}_{\text{tot}}})R_L}\cdot \frac{R_PC_P}{ \frac{R_LC_LR_PC_P}{1+(g_{\text{m}_{\text{dio}}}+g_{\text{ds}_{\text{tot}}})R_L}}\cdot \frac{1/(R_PC_P)+s}{s^2 + \frac{(1+g_{\text{ds}_{\text{tot}}}R_L)R_PC_P+C_PR_L+R_LC_L}{R_PC_P}s + \frac{1+(g_{\text{m}_{\text{dio}}}+g_{\text{ds}_\text{tot}})R_L}{R_LC_LR_PC_P}} \\ &= A_0 \cdot A(s) \end{align}\]

That is

\[\begin{align} \omega_z &= \frac{1}{R_PC_P} \tag{1} \\ \omega_n &= \sqrt{\frac{1+(g_{\text{m}_{\text{dio}}}+ g_{\text{ds}_\text{tot}})R_L}{R_LC_LR_PC_P}} = \sqrt{\omega_{p0}\omega_z} \\ \zeta & = \frac{(1+g_{\text{ds}_\text{tot}}R_L)R_PC_P+C_PR_L+R_LC_L}{R_PC_P} \frac{1}{2 \omega_n} \end{align}\]

Where \[\begin{align} \omega_{p0} &= \frac{1}{(R_L||\frac{1}{g_{\text{m}_{\text{dio}}}}||\frac{1}{g_{\text{m}_{\text{tot}}}})C_L} \tag{2} \end{align}\]

Here, relate \(\omega_{p0}\) and \(\omega_z\) by coefficient \(\alpha\) \[ \omega_{p0} = \alpha \cdot \omega_z \tag{3} \] This way \[ \omega_n= \sqrt{\alpha}\cdot \omega_z \]

\[ \zeta = \frac{1}{2}(K\sqrt{\alpha}+\frac{1+C_P/C_L}{\sqrt{\alpha}}) \tag{4} \]

where \[ K = \frac{R_L||\frac{1}{g_{\text{m}_{\text{dio}}}}||\frac{1}{g_{\text{m}_{\text{tot}}}}}{R_L||g_\text{ds\_tot}} \]

And \(A(s)\) can be expressed as \[ A(s) = \frac{\frac{s}{\omega_z}+1}{\frac{s^2}{\omega_n^2}+2\frac{\zeta}{\omega_n}s+1} \] It magnitude in dB \[ A_\text{dB} = 10\log\frac{1+(\omega/\omega_z)^2}{1+(\omega/\omega_n)^4+2\omega^2(2\zeta^2-1)/\omega_n^2} \] Substitute \(\omega_n\) with Eq (2), followed is obtained \[ A_\text{dB} = 10\log{\frac{\alpha^2(\omega_z^4 + \omega_z^2\omega^2)}{\alpha^2\omega_z^4+\omega^4+2\alpha\omega_z^2(2\zeta^2-1)\omega^2}} \] peaking frequency \[ \omega_\text{peak} = \omega_z\cdot \sqrt{\sqrt{(\alpha+1)^2 - 4\alpha \zeta^2}-1} \] If \(\zeta=1\) \[\begin{align} \omega_{A_\text{dB = 0dB} }&= \sqrt{1-2/\alpha}\cdot \omega_{p0} \\ \omega_\text{peak} &= \omega_z\sqrt{\alpha-2} \\ A_\text{dB,peak} &= 10\log\frac{\alpha^2}{4(\alpha-1)} \end{align}\]

reference

J. Kim et al., "A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS," 2018 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018 [https://2024.sci-hub.se/6715/9a3d5a4825e551544403f87f0b9f6a89/10.1109@ISSCC.2018.8310204.pdf] [slides]

Miguel Gandara. CICC2025 Circuits Insights: Wireline Receiver Circuits [https://youtu.be/X4JTuh2Gdzg]


S. Shekhar, J. S. Walling and D. J. Allstot, "Bandwidth Extension Techniques for CMOS Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006 [pdf]

David J. Allstot Bandwidth Extension Techniques for CMOS Amplifiers [https://ewh.ieee.org/r5/denver/sscs/Presentations/2007_08_Allstot.pdf]

J. Paramesh and D. J. Allstot, "Analysis of the Bridged T-Coil Circuit Using the Extra-Element Theorem," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 12, pp. 1408-1412, Dec. 2006 [https://sci-hub.st/10.1109/TCSII.2006.885971]

S. C. D. Roy, "Comments on "Analysis of the Bridged T-coil Circuit Using the Extra-Element Theorem," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 8, pp. 673-674, Aug. 2007 [https://sci-hub.st/10.1109/TCSII.2007.899834]

B. Razavi, "The Bridged T-Coil [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Volume. 7, Issue. 40, pp. 10-13, Fall 2015 [https://www.seas.ucla.edu/brweb/papers/Journals/BRFall15TCoil.pdf]

โ€”, "The Design of Broadband I/O Circuits [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 13, Issue. 2, pp. 6-15, Spring 2021 [http://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_2_2021.pdf]

Deog-Kyoon Jeong. Topics in IC Design: T-Coil [pdf]

P. Heydari, "Neutralization Techniques for High-Frequency Amplifiers: An Overview," in IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 82-89, Fall 2017 [https://sci-hub.ru/10.1109/MSSC.2017.2745858]

โ€”, "Evolution of Broadband Amplifier Design: From Single-Stage to Distributed Topology," in IEEE Microwave Magazine, vol. 24, no. 9, pp. 18-29, Sept. 2023

Cowan G. Mixed-Signal CMOS for Wireline Communication: Transistor-Level and System-Level Design Considerations. Cambridge University Press; 2024

Stariฤ, Peter and Erik Margan. โ€œWideband amplifiers.โ€ (2006) [pdf]

Bob Ross. IBIS Summit [T-Coils and Bridged-T Networks], [T-Coil Topics]

Walling, Jeffrey & Shekhar, Sudip & Allstot, David. (2008). Wideband CMOS Amplifier Design: Time-Domain Considerations. Circuits and Systems I: Regular Papers, IEEE Transactions on. 55. 1781 - 1793. [pdf]

A. A. Abidi, "The T-Coil Circuit Demystified," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 72, no. 9, pp. 4469-4480, Sept. 2025

S. Lin, D. Huang and S. Wong, "Pi Coil: A New Element for Bandwidth Extension," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp. 454-458, June 2009

M. Kossel et al., "A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in 65 nm Bulk CMOS With <โˆ’16 dB Return Loss Over 10 GHz Bandwidth," in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2905-2920, Dec. 2008 [https://web.mit.edu/magic/Public/papers/04684644.pdf]


S. Galal and B. Razavi, "Broadband ESD protection circuits in CMOS technology," in IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003, doi: 10.1109/JSSC.2003.818568.

M. Ker and Y. Hsiao, "On-Chip ESD Protection Strategies for RF Circuits in CMOS Technology," 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2006, pp. 1680-1683, doi: 10.1109/ICSICT.2006.306371.

M. Ker, C. Lin and Y. Hsiao, "Overview on ESD Protection Designs of Low-Parasitic Capacitance for RF ICs in CMOS Technologies," in IEEE Transactions on Device and Materials Reliability, vol. 11, no. 2, pp. 207-218, June 2011, doi: 10.1109/TDMR.2011.2106129.

Kosnac, Stefan (2021) Analysis of On-Chip Inductors and Arithmetic Circuits in the Context of High Performance Computing [https://archiv.ub.uni-heidelberg.de/volltextserver/30559/1/Dissertation_Stefan_Kosnac.pdf]

Chapter 4.5. High Frequency Passive Devices [https://www.cambridge.org/il/files/7713/6698/2369/HFIC_chapter_4_passives.pdf]


Elad Alon, ISSCC 2014, "T6: Analog Front-End Design for Gb/s Wireline Receivers" [pdf]

Byungsub Kim, ISSCC 2022, "T11: Basics of Equalization Techniques: Channels, Equalization, and Circuits"

K. Yadav, P. -H. Hsieh and A. Chan Carusone, "Linearity Analysis of Source-Degenerated Differential Pairs for Wireline Applications," in IEEE Open Journal of Circuits and Systems [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769573]

Minsoo Choi et al., "An Approximate Closed-Form Channel Model for Diverse Interconnect Applications," IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 61, no. 10, pp. 3034-3043, Oct. 2014.

A resonant circuit refers to an electrical circuit using circuit elements such as an inductor (L) and a capacitor (C) to cause resonance at a specific frequency.

There are two types of resonant circuits:

  • series resonant circuits
  • parallel resonant circuits

In a series resonant circuit, the impedance of the circuit reaches its minimum value at resonance, whereas in a parallel resonant circuit, the impedance reaches its maximum value

image-20251027213420942

Resonant Frequency

\(\zeta \lt 1\): Complex-Conjugate Poles, but not resonant peak

\(\zeta \lt \sqrt{2}/2\): resonant peak

image-20251205220247644

[https://lpsa.swarthmore.edu/Bode/underdamped/underdampedApprox.html]

image-20251205233053573


Prof. M. Green / U.C. Irvine EECS 270C / Winter 2013 [pdf]

image-20251205232150381 \[ s^2 + \frac{R}{L}s + \frac{1}{LC_L} = s^2 + 2\zeta \omega_n s + \omega_n^2 \] where \(\omega_n = \frac{1}{\sqrt{LC_L}}\) and \(\zeta=\frac{R}{2}\sqrt{\frac{C_L}{L}}\)

Resonant frequency is \[ \omega_r = \omega_n \sqrt{1-2\zeta^2} = \frac{1}{\sqrt{LC_L}}\left(1-\frac{C_LR^2}{2L}\right) \] To have no resonant \(\zeta^2 >\frac{1}{2}\), i.e \[ \frac{L}{C_LR^2} < \frac{1}{2} \]

LC Resonator

image-20240826223955851

Complex Conjugate Zeros

image-20240826224132736

Complex Conjugate Poles

\(\zeta \to 0\) push \(|G(s)\approx \frac{1}{2\zeta} \to+\infty\)

image-20251027212546424

image-20240826224317197


image-20240826224651954

image-20240826224823886

Non ideal capacitor & inductor

Tank Circuits/Impedances [https://stanford.edu/class/ee133/handouts/lecturenotes/lecture5_tank.pdf]

Resonant Circuits [https://web.ece.ucsb.edu/~long/ece145b/Resonators.pdf]

Series & Parallel Impedance Parameters and Equivalent Circuits [https://assets.testequity.com/te1/Documents/pdf/series-parallel-impedance-parameters-an.pdf]

ES Lecture 35: Non ideal capacitor, Capacitor Q and series RC to parallel RC conversion [https://youtu.be/CJ_2U5pEB4o?si=4j4CWsLSapeu-hBo]

Capacitor

image-20231224163730529


image-20251009211423154

image-20251009211708604

\[ Q_s = \frac{X_s}{R_s} = X_p\frac{Q_p^2}{Q_p^2+1}\cdot \frac{Q_p^2+1}{R_p} =\frac{Q_p^2}{R_p/X_p}=Q_p \]

So long as \(Q_s\gg 1\) \[\begin{align} R_p &\approx Q_s^2R_s \\ C_p &\approx C_s \end{align}\]


image-20251011224853381

image-20240119001309410

Inductor

image-20231224163740411

So long as \(Q_s\gg 1\) \[\begin{align} R_p &\approx Q_s^2R_s \\ L_p &\approx L_s \end{align}\]

SRF (Self-Resonant Frequency)

[Understanding RF Inductor Specifications, https://www.ece.uprm.edu/~rafaelr/inel5325/SupportDocuments/doc671_Selecting_RF_Inductors.pdf]

[RFIC-GPT Wiki, https://wiki.icprophet.net/]

image-20240802210109935

\[ f_\text{SRF} = \frac{1}{2\pi \sqrt{LC}} \] The SRF of an inductor is the frequency at which the parasitic capacitance of the inductor resonates with the ideal inductance of the inductor, resulting in an extremely high impedance. The inductance only acts like an inductor below its SRF

image-20241221092745311

  • For choking applications, chose an inductor whose SRF is at or near the frequency to be attenuated

  • For other applications, the SRF should be at least 10 times higher than the operating frequency

    it is more important to have a relatively flat inductance curve (constant inductance vs. frequency) near the required frequency

antiresonance

TODO ๐Ÿ“…

reference

Hossein Hashemi, RF Circuits, [https://youtu.be/0f3yZMvD2Jg?si=2c1Q4y6WJq8Jj8oN]

Resonant Circuits: Resonant Frequency and Q Factor [https://techweb.rohm.com/product/circuit-design/electric-circuit-design/18332/]

J. Nako, G. Tsirimokou, C. Psychalinos and A. S. Elwakil, "Approximation of Firstโ€“Order Complex Resonators in the Frequencyโ€“Domain," in IEEE Access, vol. 13, pp. 54494-54503, 2025 [pdf]

How to generate complex poles without inductor? [https://a2d2ic.wordpress.com/2020/02/19/basics-on-active-rc-low-pass-filters/]

PFD/CP Modelling

image-20250807225013850

pfdcp-lmdl.drawio


image-20250807230740496

Deog-Kyoon Jeong. Topics in IC Design 2.1 Introduction to Phase-Locked Loop [pdf]

Charge Pump Noise

Cyclostationary Noise (Modulated Noise) [https://raytroop.github.io/2024/04/27/noise/#cyclostationary-noise-modulated-noise]

image-20250726174414209


Saurabh Saxena,Phase Locked Loops: Noise Simulations for CP-PLL Blocks [https://youtu.be/Q1libz-XqRw]

image-20250726183455160


image-20240928013058435

Michael H. Perrott, PLL Design Using the PLL Design Assistant Program. [https://designers-guide.org/forum/Attachments/pll_manual.pdf]

M.H. Perrott, M.D. Trott, C.G. Sodini, "A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis", JSSC, vol 38, no 8, pp 1028-1038, Aug 2002. [https://www.cppsim.com/Publications/JNL/perrott_jssc02.pdf]

charge pump with amplifier

image-20241002211524347

Young, I.A., Greason, J.K., Wong, K.L.: A PLL Clock Generator with 5 to 110MHz of Lock Range for Microprocessors. IEEE Journal of Solid-State Circuits 27(11), 1599โ€“ 1607 (1992) [https://people.engr.tamu.edu/spalermo/ecen620/pll_intel_young_jssc_1992.pdf]

Johnson, M., Hudson, E.: A variable delay line PLL for CPU-coprocessor synchronization. IEEE Journal of Solid-State Circuits 23(10), 1218โ€“1223 (1988) [https://sci-hub.se/10.1109/4.5947]

Sam Palermo, Lecture 5: Charge Pump Circuits, ECEN620: Network Theory Broadband Circuit Design Fall 2024 [https://people.engr.tamu.edu/spalermo/ecen620/lecture05_ee620_charge_pumps.pdf]

Non-ideal Effects in Charge Pump

The periodic signal on VCTRL modulates the VCO, giving rise to deterministic jitter


  • Timing Offsets Between Up and Dn Pulses
  • Mismatch Between Charge-Pump Current Sources
  • Incomplete Settling of Charge-Pump Currents
  • Finite Output Resistance of the Charge Pump

Up/Dn Timing Offset

image-20241222171705612

If Dn pulse arrives \(\Delta T\) after the Up pulse, the steady-state VCTRL will be slightly lower than it would be without the \(\Delta T\) mismatch so as to return the VCO's phase to match the reference clocks.

Vice versa, if If Up pulse arrives \(\Delta T\) after the Dn pulse, the steady-state VCTRL will be slightly higher than without \(\Delta T\) mismatch

Current Sources Mismatch

image-20241222174620713

image-20241222174718564

Incomplete Settling

TODO ๐Ÿ“…

W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 1999, pp. 545-548 vol.2 [pdf]

Cowan G. Mixed-Signal CMOS for Wireline Communication: Transistor-Level and System-Level Design Considerations. Cambridge University Press; 2024

2nd loop filter

PI (proportional - integral) Loop Filter

image-20240907123938255

image-20240907124029346

image-20240907124018476

PFD Deadzone

Dead zone induced by incomplete settling of charge-pump currents

This situation can be avoided by adding additional delay to the AND gate in the PFD

image-20241222190011244

Sam Palermo, "Lecture 4: Phase Detector Circuit" [https://people.engr.tamu.edu/spalermo/ecen620/lecture04_ee620_phase_detectors.pdf]

LPF leakage

image-20241222192007824

For the sake of simplicity, \(V_{ctr}\) looks like a rectangular pulse with an amplitude of \(I_{CP}R_1\) and a duty ratio of (\(I_{leak}/I_{CP}\)), whose first coefficient of Fourier series is

image-20241222200514941

where \(I_\text{leak} \ll I_{CP}\) is assumed

Then, the peak frequency deviation \(\Delta f\) \[ \Delta f = a_1 \cdot K_v = 2I_\text{leak}R_1 K_v \] using narrowband FM approximation, we have \[ P_\text{spur} = 20\log\left(\frac{\Delta f}{2f_\text{ref}}\right) = 20\log\left(\frac{I_\text{leak}R_1 K_v}{f_\text{ref}}\right) \]

W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 1999, pp. 545-548 vol.2 [pdf]

โ€”. Yu, Z., 2024. Phase-Locked Loops: System Perspectives and Circuit Design Aspects. John Wiley & Sons


image-20241222200158107

[https://lpsa.swarthmore.edu/Fourier/Series/ExFS.html]

reference

Lacaita, Andrea Leonardo, Salvatore Levantino, and Carlo Samori. Integrated frequency synthesizers for wireless systems. Cambridge University Press, 2007.

Saurabh Saxena. Noise Simulations for CP-PLL Blocks [https://youtu.be/Q1libz-XqRw]

โ€”, IIT Madras. CICC2022 Clocking for Serial Links - Frequency and Jitter Requirements, Phase-Locked Loops, Clock and Data Recovery

Helene Thibieroz, Customer Support CIC. Using Spectre RF Noise-Aware PLL Methodology to Predict PLL Behavior Accurately [https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3056e59ea76165373f90152f915a829d25dabebc]


Chembiyan T. Chargepump PLL Basics- From A Control Theoretic Viewpoint [linkedin]

โ€”. Challenges in Chargepump PLL Design- A Qualitative Approach [linkedin]

โ€”. A Unified Approach to Low Noise Loop Design in Chargepump PLLs [linkedin]


Xiang Gao Credo Semiconductor. ISSCC2018 T1: Low-Jitter PLLs for Wireless Transceivers [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T1/T1Visuals.pdf]

Hunting Jitter

Hunting jitter is often referred to as dithering jitter, the periodic time error between data clock and input data, which exhibits a limit-cycle behavior

image-20250819202727871

image-20250819203806711

image-20250819210031102

BB PD

Youngdon Choi, Deog-Kyoon Jeong and W. Kim, "Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 775-783, Nov. 2003 [https://sci-hub.st/10.1109/TCSII.2003.819070]

John T. Stonick, ISSCC 2011 TUTORIALS T5: DPLL-Based Clock and Data Recovery [slides transcript]

Walker, Richard. (2003). Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems. [pdf]

โ€”, Clock and Data Recovery for Serial Data Communications, focusing on bang-bang CDR design methodology, ISSCC Short Course, February 2002. [slides]

It's ternary, because early, late and no transition

notice the transition density = 1 in digital PLL

Linearization

The effective PD gain is a function of the input jitter pdf, it enables one to anticipate the effects of input jitter on loop characteristics

BB Gain is the slope of average BB output \(\mu\), versus phase offset \(\phi\), i.e. \(\frac {\partial \mu}{\partial \phi}\),

BB only produces output for a transition and this de-rates the gain. Transition density = 0.5 for random data

\[ K_{BB} = \frac{1}{2}\frac {\partial \mu}{\partial \phi} \]

where \(\mu = (1)\times \mathrm{P}(\text{late}|\phi) + (-1)\times \mathrm{P}(\text{early}|\phi)\)

bb-PDF.drawio

Both jitter and amplitude noise distribution are same, just scaled by slope

Self-Noise Term

One price we pay for BB PD versus linear PD is the self-noise term. For small phase errors BB output noise is the full magnitude of the sliced data

The PD output should be almost 0 for small phase errors. i.e. ideal PD output noise should be 0

\[ \sigma_{BB}^2 = 1^2 \cdot \mathrm{P}(\text{trans}) + 0^2\cdot (1-\mathrm{P}(\text{trans})) = 0.5 \]

image-20241127215947017

Input referred jitter from BB PD is proportional to incoming jitter

image-20241127220933103

gain simulation

L. Avallone, M. Mercandelli, A. Santiccioli, M. P. Kennedy, S. Levantino and C. Samori, "A Comprehensive Phase Noise Analysis of Bang-Bang Digital PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2775-2786, July 2021 [https://sci-hub.st/10.1109/TCSI.2021.3072344]

T. -K. Kuan and S. -I. Liu, "A Bang Bang Phase-Locked Loop Using Automatic Loop Gain Control and Loop Latency Reduction Techniques," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 821-831, April 2016 [https://sci-hub.st/10.1109/JSSC.2016.2519391]

image-20250902215541227

image-20250913192552933

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import matplotlib.pyplot as plt
import numpy as np

N = 2**10
sigma = 0.1
dt = np.random.normal(sigma,size=N)
et = np.sign(dt)

# Eq-(2)
coef_form = np.mean(np.abs(dt)) / np.mean(np.power(dt, 2))
print(f'coef_form: {coef_form}')

# Eq-(9)
coef_gauss = (2/np.pi)**0.5/sigma
print(f'coef_gauss: {coef_gauss}')

# polyfit
coef_fit = np.polyfit(dt, et, 1)
print(f'coef_fit: {coef_fit}')

x = np.linspace(-3.5, 3.5, 1000)
y = coef_fit[0]*x + coef_fit[1]

plt.figure(figsize=(12,6))
plt.plot(dt, et, 'o')
plt.plot(x, y, linewidth=2, linestyle='--')

# Calculate histogram counts and bin edges
counts, bin_edges = np.histogram(dt, bins=100)
# Find the maximum count
max_count = counts.max()
# Create weights to normalize the maximum height to 1
weights = np.ones_like(dt) / max_count
plt.hist(dt, bins=100, weights=weights)

plt.xlabel(r'$\Delta t$')
plt.grid(True)
plt.legend([r'$\Delta t \sim \varepsilon $', r'$x_{fit} \sim y_{fit}$', r'$ \text{hist}_{\Delta t}$'])
plt.show()


# coef_form: 0.7910794009505085
# coef_gauss: 7.978845608028654
# coef_fit: [0.79013999 0.0204332 ]

Pavan, Shanthi, Richard Schreier, and Gabor Temes. (2016). Understanding Delta-Sigma Data Converters. 2nd ed. Wiley. - 2.2.1 Quantizer Modeling

image-20250902212931083 \[ \frac{d\sigma_e^2}{dk} =0\space\space\Rightarrow\space\space k=\frac{\left\langle v,y\right\rangle}{\left\langle y,y \right\rangle} \]

image-20250902231449843

DCO Quantization Noise

TODO ๐Ÿ“…

TDC Quantization Noise

TODO ๐Ÿ“…

image-20250601122145164

CDR Loop Latency

Amir Amirkhany. ISSCC 2019 "Basics of Clock and Data Recovery Circuits"

CC Chen. Why A Low Loop Latency in A CDR Design? [https://youtu.be/io9WZbhlahU]

โ€”. Why Understanding and Optimizing Loop Latency for A CDR Design? [https://youtu.be/Jyy18865jv8]

image-20250706173343946


image-20250706121529451


image-20241102235118149

image-20241102235145417

loop latency is represented as \(e^{-sD}\) in linear model


image-20241102235736432

image-20241103000223470

image-20241103000653906

Sensitivity to Loop Latency

image-20241103142137640


image-20241103142656134

image-20241103142531277

image-20241103142938907

Optimizing Loop Latency

TODO ๐Ÿ“…

CC Chen. Circuit Image: Why Understanding and Optimizing Loop Latency for A CDR Design? [https://youtu.be/Jyy18865jv8?si=uY2HUV8mERLterwH]

DT & CT Spectral Density

image-20250512230604969


[Sampling of WSS process of Systems, Modulation and Noise]

image-20250512233058520

That is \[ P_{x_s x_s} (f)= \frac{1}{T_s}P_{xx}(f) \] In going from discrete time to continuous time, we must add a scale factor \(1/T\), the sample period


image-20250513211531981

reference

Sam Palermo, ECEN620 2024 Lecture 9: Digital PLLs [https://people.engr.tamu.edu/spalermo/ecen620/lecture09_ee620_digital_PLLs.pdf]

Topics in IC(Wireline Transceiver Design) [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%203%20-%20ADPLL.pdf]

Michael H. Perrott, ISSCC 2008 Tutorial on Digital Phase-Locked Loops [https://www.nishanchettri.com/isscc-slides/2008%20ISSCC/Tutorials/T05_Pres.pdf]

โ€”, CICC 2009 Tutorial on Digital Phase-Locked Loops [https://www.cppsim.com/PLL_Lectures/digital_pll_cicc_tutorial_perrott.pdf]

Robert Bogdan Staszewski, CICC 2020: Beyond All-Digital PLL for RF and Millimeter-Wave Frequency Synthesis [link]

Akihide Sai, ISSCC 2023 T5: All-digital PLLs From Fundamental Concepts to Future Trends [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T5.pdf]

Mike Shuo-Wei Chen, CICC 2020 ES2-3: Low-Spur PLL Architectures and Techniques [https://youtu.be/sgPDchYhN-4?si=FAy8N3SuX6vVpYhl]

S. Levantino, "Digital phase-locked loops," 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 2018 [slides]

Saurabh Saxena, IIT Madras. Phase-Locked Loops: Noise Analysis in Digital PLL [https://youtu.be/mddtxcqfiKU?si=yD15KM9WBkT6c68P]


Y. Hu, T. Siriburanon and R. B. Staszewski, "Multirate Timestamp Modeling for Ultralow-Jitter Frequency Synthesis: A Tutorial," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3030-3036, July 2022


Neil Robertson. Digital PLL's -- Part 1 [https://www.dsprelated.com/showarticle/967.php]

Neil Robertson. Digital PLL's -- Part 2 [https://www.dsprelated.com/showarticle/973.php]

Neil Robertson. Digital PLL's -- Part 3 [https://www.dsprelated.com/showarticle/1177.php]

Daniel Boschen. GRCon24 - Quick Start on Control Loops with Python Workshop [video, slides]


L. Avallone, M. Mercandelli, A. Santiccioli, M. P. Kennedy, S. Levantino and C. Samori, "A Comprehensive Phase Noise Analysis of Bang-Bang Digital PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2775-2786, July 2021 [https://sci-hub.st/10.1109/TCSI.2021.3072344]

M. Zanuso, D. Tasca, S. Levantino, A. Donadel, C. Samori and A. L. Lacaita, "Noise Analysis and Minimization in Bang-Bang Digital PLLs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 11, pp. 835-839, Nov. 2009 [https://sci-hub.st/10.1109/TCSII.2009.2032470]

N. Da Dalt, "Linearized Analysis of a Digital Bang-Bang PLL and Its Validity Limits Applied to Jitter Transfer and Jitter Generation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3663-3675, Dec. 2008 [https://sci-hub.st/10.1109/TCSI.2008.925948]

โ€”, "Markov Chains-Based Derivation of the Phase Detector Gain in Bang-Bang PLLs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1195-1199, Nov. 2006 [https://sci-hub.st/10.1109/TCSII.2006.883197]

โ€”, "A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 1, pp. 21-31, Jan. 2005 [https://sci-hub.se/10.1109/TCSI.2004.840089]

โ€”, "Theory and Implementation of Digital Bang-Bang Frequency Synthesizers for High Speed Serial Data Communications", PhD Dissertation, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany, 2007 [pdf]

Walker, Richard. (2003). Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems. [paper,slides]


hunting jitter

S. Jang, S. Kim, S. -H. Chu, G. -S. Jeong, Y. Kim and D. -K. Jeong, "An Optimum Loop Gain Tracking All-Digital PLL Using Autocorrelation of Bangโ€“Bang Phase-Frequency Detection," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 9, pp. 836-840, Sept. 2015 [https://sci-hub.st/10.1109/TCSII.2015.2435691] [phd thesis]

Deog-Kyoon Jeong. Topics in IC (Wireline Transceiver Design). Lec 3 - All-Digital PLL [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%203%20-%20ADPLL.pdf]

โ€”. Topics in IC (Wireline Transceiver Design). Lec 6 - Clock and Data Recovery [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%206%20-%20Clock%20and%20Data%20Recovery.pdf]

Lee Hae-Chang.: โ€˜An estimation approach to clock and data recoveryโ€™, PhD Thesis, Stanford University, November 2006 [pdf]

J. Kim, Design of CMOS Adaptive-Supply Serial Links, Ph.D. Thesis, Stanford University, December 2002. [pdf]

High-speed Serial Interface 2013. Lect. 16 โ€“ Clock and Data Recovery 3 [http://tera.yonsei.ac.kr/class/2013_1_2/lecture/Lect16_CDR-3.pdf]

CC Chen. Why Hunting Jitter Happens in CDR: The Role of Input Jitter and Latency? [https://youtu.be/hPDielPsFgY]

Switched Capacitor Circuits

image-20250607160642574

image-20250607171740269

Clock Feedthrough

aka. LO leakage

TODO ๐Ÿ“…

Integrator

TODO ๐Ÿ“…

[https://www.eecg.utoronto.ca/~johns/ece1371/slides/10_switched_capacitor.pdf]

[https://www.seas.ucla.edu/brweb/papers/Journals/BRWinter17SwCap.pdf]

[https://class.ece.iastate.edu/ee508/lectures/EE%20508%20Lect%2029%20Fall%202016.pdf]

reference

R. S. Ashwin Kumar, Analog circuits for signal processing [https://home.iitk.ac.in/~ashwinrs/2022_EE698W.html]

R. Gregorian and G. C. Temes. Analog MOS Integrated Circuits for Signal Processing. Wiley-Interscience, 1986 [pdf]

Christian-Charles Enz. "High precision CMOS micropower amplifiers" [pdf]

Boris Murmann. EE315A VLSI Signal Conditioning Circuits


Negar Reiskarimian. CICC 2025 Insight: Switched Capacitor Circuits [https://youtu.be/SL3-9ZMwdJQ]

Leeson's Model - LTI

M.H. Perrott [https://www.cppsim.com/PLL_Lectures/day2_am.pdf]

โ€”. [https://ocw.mit.edu/courses/6-976-high-speed-communication-circuits-and-systems-spring-2003/ceb3d539691d5393a29af71ae98afb62_lec12.pdf]

Leeson's model is outcome of linearized VCO noise analysis

image-20250920125120068

image-20250920170108939

\[ Q = R_p\omega_0 C_p = \frac{R_p}{\omega_0 L} \]

where \(\omega_0 = \frac{1}{\sqrt{L_pC_p}}\)

image-20250920170331118

[https://stanford.edu/class/ee133/handouts/lecturenotes/lecture5_tank.pdf]

image-20250920171147163

image-20250920171411886


Carlo Samori ISSCC2016 T1: Understanding Phase Noise in LC VCOs

image-20251104233318469

Leeson's limitations

image-20251122144811362

Hajimiri's Model- LTV ISF

image-20251122143723827


image-20250629065454831

image-20250629073305626

ISF model

image-20251008184336891

image-20251008184349072

C. Livanelioglu, L. He, J. Gong, S. Arjmandpour, G. Atzeni and T. Jang, "19.10 A 4.6GHz 63.3fsrms PLL-XO Co-Design Using a Self-Aligned Pulse-Injection Driver Achieving โˆ’255.2dB FoMJ Including the XO Power and Noise," 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2025

image-20251008185243498

image-20251008185406867


image-20250626210829173

[https://adityamuppala.github.io/assets/Notes_YouTube/Oscillators_ISF_model.pdf]

image-20250629080430980

Periodic ISF: Noise Folding

image-20250629080632902

When performing the phase noise computation integral, there will be a negligible contribution from all terms, other than \(n=m\)

image-20250629083344136

image-20250629083453955

Given \(i(t) = I_m \cos[(m\omega_0 +\Delta \omega)t]\),

\[\begin{align} \phi(t) &= \frac{1}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t I_m\cos((m\omega_0 +\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t I_m\cos((m\omega_0 +\Delta \omega)\tau)\cos(n\omega_0\tau)d\tau\right] \\ &= \frac{I_m}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t \cos((m\omega_0 +\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t \frac{\cos((m\omega_0 + \Delta \omega+ n\omega_0)\tau)+ \cos((m\omega_0+\Delta \omega - n\omega_0)\tau)}{2}d\tau\right] \end{align}\]

If \(m=0\) \[ \phi(t) \approx \frac{I_0C_0}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t) \] If \(m\neq 0\) and \(m=n\) \[ \phi(t) \approx \frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t) \]

\(m\omega_0 +\Delta \omega \ge 0\)

image-20250629105156403

image-20250629100444702

A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998 [pdf]

image-20250629102112814


Corrections to "A General Theory of Phase Noise in Electrical Oscillators"

A. Hajimiri and T. H. Lee, "Corrections to "A General Theory of Phase Noise in Electrical Oscillators"," in IEEE Journal of Solid-State Circuits, vol. 33, no. 6, pp. 928-928, June 1998 [https://sci-hub.se/10.1109/4.678662]

Ali Hajimiri. Phase Noise in Oscillators [http://www-smirc.stanford.edu/papers/Orals98s-ali.pdf]

L. Lu, Z. Tang, P. Andreani, A. Mazzanti and A. Hajimiri, "Comments on โ€œComments on โ€œA General Theory of Phase Noise in Electrical Oscillatorsโ€โ€," in IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2170-2170, Sept. 2008 [https://sci-hub.se/10.1109/JSSC.2008.2005028]

image-20250629104527666

image-20250629081831223

Given \(i(t) = I_m \cos[(m\omega_0 - \Delta \omega)t]\) and \(m \ge 1\)

\[\begin{align} \phi(t) &= \frac{1}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t I_m\cos((m\omega_0 -\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t I_m\cos((m\omega_0 -\Delta \omega)\tau)\cos(n\omega_0\tau)d\tau\right] \\ &= \frac{I_m}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t \cos((m\omega_0 -\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t \frac{\cos((m\omega_0 - \Delta \omega+ n\omega_0)\tau)+ \cos((m\omega_0-\Delta \omega - n\omega_0)\tau)}{2}d\tau\right] \end{align}\]

If \(m\ge 1\) and \(m=n\) \[ \phi(t) \approx \frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t) \] That is

\(m = 0\) \(m\gt 0\) & \(m\omega_0+\Delta \omega\) \(m\gt 0\) & \(m\omega_0-\Delta \omega\)
\(\phi(t)\) \(\frac{I_0C_0}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t)\) \(\frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t)\) \(\frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t)\)
\(P_{SBC}(\Delta \omega)\) \(10\log(\frac{I_0^2C_0^2}{16q_\text{max}^2\Delta \omega^2})\) \(10\log(\frac{I_m^2C_m^2}{16q_\text{max}^2\Delta \omega^2})\) \(10\log(\frac{I_m^2C_m^2}{16q_\text{max}^2\Delta \omega^2})\)

\[\begin{align} \mathcal{L}\{\Delta \omega\} &= 10\log\left(\frac{I_0^2C_0^2}{16q_\text{max}^2\Delta \omega^2} + 2\frac{I_m^2C_m^2}{16q_\text{max}^2\Delta \omega^2}\right) \\ &= 10\log\left(\frac{\overline{i_n^2/\Delta f}\cdot \frac{C_0^2}{2} }{4q_\text{max}^2\Delta \omega^2} + \frac{\overline{i_n^2/\Delta f}\cdot\sum_{m=1}^\infty C_m^2 }{4q_\text{max}^2\Delta \omega^2}\right) \\ &= 10\log \frac{\overline{i_n^2/\Delta f}(C_0^2/2+\sum_{m=1}^\infty C_m^2)}{4q_\text{max}^2\Delta \omega^2} \\ &= 10\log \frac{\overline{i_n^2/\Delta f}\cdot \Gamma_\text{rms}^2}{2q_\text{max}^2\Delta \omega^2} \end{align}\]

ISF & \(1/f\)-noise up-conversion

TODO ๐Ÿ“…

image-20250626211817628

ISF Simulation

image-20241113232703941

PSS + PXF Method

Yizhe Hu, "A Simulation Technique of Impulse Sensitivity Function (ISF) Based on Periodic Transfer Function (PXF)" [https://bbs.eetop.cn/thread-869343-1-1.html]

TODO ๐Ÿ“…

Transient Method

David Dolt. ECEN 620 Network Theory - Broadband Circuit Design: "VCO ISF Simulation" [https://people.engr.tamu.edu/spalermo/ecen620/ISF_SIM.pdf]

image-20241016211020230

image-20241016211101204

image-20241016211115630

To compare the ring oscillator and VCO the total injected charge to both should be the same

Demir's Model - NLTV PPV

image-20251122143914081

image-20250920101142887

PPV (Perturbation Projection Vector)

A. Demir and J. Roychowdhury, "A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 2, pp. 188-197, Feb. 2003 [https://sci-hub.se/10.1109/TCAD.2002.806599]

Helene Thibieroz, Customer Support CIC. Using Spectre RF Noise-Aware PLL Methodology to Predict PLL Behavior Accurately [https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3056e59ea76165373f90152f915a829d25dabebc]

Aditya Varma Muppala. Perturbation Projection Vector (PPV) Theory | Oscillators 11 | MMIC 16 [youtu.be, notes]

Limit Cycles

[https://adityamuppala.github.io/assets/Notes_YouTube/MMIC_Limit_Cycles.pdf]

Nonlinear Dynamics

image-20250622202023590

image-20250920101927173

varactor simulation

Three methods:

  • PSS +PSP (pay attention to port termination and voltage amplitude)
  • PSS +PAC
  • PSS Only

image-20251026155903015

image-20251026160758494

image-20251026160408516


rms only scale magnitude \(1/\sqrt{2}\) but retain phase for complex number, like harmonic

  • mag(vh('pss "/P5")) = mag(rms(vh('pss "/P5"))) * (2**0.5)
  • phaseDegUnwrapped(vh('pss "/P5")) = phaseDegUnwrapped(rms(vh('pss "/P5")))

image-20251026155120102

Temperature compensation

Temperature compensation for the VCO oscillation frequency is a critical issue

TODO ๐Ÿ“…

reference

Jiล™รญ Lebl. Notes on Diffy Qs: Differential Equations for Engineers [link]

Matt Charnley. Differential Equations: An Introduction for Engineers [link]

ร…strรถm, K.J. & Murray, Richard. (2021). Feedback Systems: An Introduction for Scientists and Engineers Second Edition [https://www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-public_24Jul2020.pdf]

Strogatz, S.H. (2015). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2nd ed.). CRC Press [https://www.biodyn.ro/course/literatura/Nonlinear_Dynamics_and_Chaos_2018_Steven_H._Strogatz.pdf]

Cadence Blog, "Resonant Frequency vs. Natural Frequency in Oscillator Circuits" [link]


Aditya Varma Muppala. Oscillators [https://youtube.com/playlist?list=PL9Trid0A4Da2fOmYTEjhAnUkGPxyiH7H6&si=ILxn8hfkMYjXW5f4]

P.E. Allen - 2003. ECE 6440 - Frequency Synthesizers: Lecture 160 โ€“ Phase Noise - II [https://pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L160-PhNoII(2UP).pdf]

Y. Hu, T. Siriburanon and R. B. Staszewski, "Intuitive Understanding of Flicker Noise Reduction via Narrowing of Conduction Angle in Voltage-Biased Oscillators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 1962-1966, Dec. 2019 [https://sci-hub.se/10.1109/TCSII.2019.2896483]

S. Levantino, P. Maffezzoni, F. Pepe, A. Bonfanti, C. Samori and A. L. Lacaita, "Efficient Calculation of the Impulse Sensitivity Function in Oscillators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 628-632, Oct. 2012 [https://sci-hub.se/10.1109/TCSII.2012.2208679]

S. Levantino and P. Maffezzoni, "Computing the Perturbation Projection Vector of Oscillators via Frequency Domain Analysis," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 10, pp. 1499-1507, Oct. 2012 [https://sci-hub.se/10.1109/TCAD.2012.2194493]

Thomas H. Lee. Linearity, Time-Variation, Phase Modulation and Oscillator Phase Noise [https://class.ece.iastate.edu/djchen/ee507/PhaseNoiseTutorialLee.pdf]

Y. Hu, T. Siriburanon and R. B. Staszewski, "Oscillator Flicker Phase Noise: A Tutorial," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 538-544, Feb. 2021 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9286468]

Jaeha Kim. Lecture 8. Special Topics: Design Trade -Offs in LC -Tuned Oscillators [https://ocw.snu.ac.kr/sites/default/files/NOTE/7033.pdf]

A. Demir, A. Mehrotra and J. Roychowdhury, "Phase noise in oscillators: a unifying theory and numerical methods for characterization," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 5, pp. 655-674, May 2000 [https://sci-hub.se/10.1109/81.847872]


A. A. Abidi and D. Murphy, "How to Design a Differential CMOS LC Oscillator," in IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 45-59, 2025 [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10818782]

Akihide Sai, Toshiba. ISSCC 2023 T5: All-digital PLLs From Fundamental Concepts to Future Trends [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T5.pdf]


Pietro Andreani. ISSCC 2011 T1: Integrated LC oscillators [slides,transcript]

โ€”. ISSCC 2017 F2: Integrated Harmonic Oscillators

โ€”. SSCS Distinguished Lecture: RF Harmonic Oscillators Integrated in Silicon Technologies [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-Toronto.pdf]

โ€”. ESSCIRC 2019 Tutorials: RF Harmonic Oscillators Integrated in Silicon Technologies [https://youtu.be/k1I9nP9eEHE?si=fns9mf3aHjMJobPH]

โ€”. "Harmonic Oscillators in CMOSโ€”A Tutorial Overview," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 2-17, 2021 [pdf]

C. Samori, "Tutorial: Understanding Phase Noise in LC VCOs," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2016

โ€”, "Understanding Phase Noise in LC VCOs: A Key Problem in RF Integrated Circuits," in IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 81-91, Fall 2016 [https://sci-hub.se/10.1109/MSSC.2016.2573979]

โ€”, Phase Noise in LC Oscillators: From Basic Concepts to Advanced Topologies [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-VCO-short.pdf]

Jun Yin. ISSCC 2025 T10: mm-Wave Oscillator Design


Hegazi, Emad, Asad Abidi, and Jacob Rael. The Designer's Guide to High-purity Oscillators. [New York]: Kluwer Academic Publishers, 2005. The Designer's Guide to High-Purity Oscillators [pdf]

reference

"Topics in IC (Wireline Transceiver Design): Lec 4 - Injection Locked Oscillators" [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%204%20-%20Injection%20Locked%20Oscillators.pdf]

Cowan, Glenn. (2024). Mixed-Signal CMOS for Wireline Communication: Transistor-Level and System-Level Design Considerations

Mozhgan Mansuri. ISSCC2021 SC3: Clocking, Clock Distribution, and Clock Management in Wireline/Wireless Subsystems [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/SHORT%20COURSE/ISSCC2021-SC3.pdf]

Aditya Varma Muppala. Oscillator Theory - Injection Locking [note, video1, video2]

Min-Seong Choo. Review of Injection-Locked Oscillators [https://journal.theise.org/jse/wp-content/uploads/sites/2/2020/09/JSE-2020-0001.pdf]

Ali M. Niknejad. EECS 242 Lecture 26 Injection Locking [https://rfic.eecs.berkeley.edu/courses/ee242/pdf/eecs242_lect26_injectionlocking.pdf]

0%