image-20250703212349339

speculative DFE is also known as loop unrolled DFE, which solve the critical timing on first tap


image-20250726092747147

VGA/attenuator: ensure a constant swing at the slicer input regardless of the channel variation


Inductive Peaking

TODO 📅

series peaking: capacitive splitting - split the load capacitance between the amplifier drain capacitance and the next stage gate capacitance

S. Shekhar, J. S. Walling and D. J. Allstot, "Bandwidth Extension Techniques for CMOS Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006 [https://people.engr.tamu.edu/spalermo/ecen689_oi/2006_passive_bw_extension_techniques_shekhar_jssc.pdf]

CTLE Linearity

TODO 📅 image-20250726180642570

Front-End Noise

https://people.engr.tamu.edu/spalermo/ecen689/lecture6_ee720_rx_circuits.pdf

image-20250726180326659

image-20250726181859362

DFE Error Propagation

TODO 📅

image-20250609201647012

Geoff Zhang. Preliminary Studies on DFE Error Propagation, Precoding, and their Impact on KP4 FEC Performance for PAM4 Signaling Systems [https://www.ieee802.org/3/ck/public/18_09/zhang_3ck_01a_0918.pdf]

CTLE transfer function

image-20250609201257138

Circuit Insights @ ISSCC2025: Circuits for Wireline Communications - Kevin Zheng [https://youtu.be/8NZl81Dj45M?si=J11oGnXnkJYPUi2n&t=1045]

DFE architecture

image-20250609201522455

image-20250607235201147

Extensive work on DFEs has produced a multitude of architectures, which can be broadly categorized as "direct"" or "unrolled" (speculative) DFEs with "full-rate" or "half-rate" clocking

image-20250608000306928

image-20250608000338808

image-20250608000357010

S. Ibrahim and B. Razavi, "Low-Power CMOS Equalizer Design for 20-Gb/s Systems," in IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1321-1336, June 2011 [https://sci-hub.se/10.1109/JSSC.2011.2134450]

S. Ibrahim and B. Razavi, Low-Power DFE Design [https://picture.iczhiku.com/resource/eetop/wykflwIuIQDzYNcB.PDF]

PAM4 DFE

image-20250525202236767

image-20250525210606180

image-20250525221556845

image-20250525221432513

image-20250525221148218

K. -C. Chen, W. W. -T. Kuo and A. Emami, "A 60-Gb/s PAM4 Wireline Receiver With 2-Tap Direct Decision Feedback Equalization Employing Track-and-Regenerate Slicers in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 56, no. 3, pp. 750-762, March 2021 [https://www.mics.caltech.edu/wp-content/uploads/2021/02/JSSC-2020-Xavier-PAM4-Receiver.pdf]

Hongtao Zhang, DesignCon 2016. PAM4 Signaling for 56G Serial Link Applications − A Tutorial [https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf]

reference

Miguel Gandara, MediaTek. CICC 2025 Circuit Insights: Basics of Wireline Receiver Circuits [https://youtu.be/X4JTuh2Gdzg]

Tony Chan Carusone, Alphawave Semi. VLSI2025 SC2: Connectivity Technologies to Accelerate AI

H. Park et al., "7.4 A 112Gb/s DSP-Based PAM-4 Receiver with an LC-Resonator-Based CTLE for >52dB Loss Compensation in 4nm FinFET," 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2025

Noman Hai, Synopsys, Canada CASS Talks 2025 - May 2, 2025: High-speed Wireline Interconnects: Design Challenges and Innovations in 224G SerDes [https://www.youtube.com/live/wHNOlxHFTzY]

image-20250607092632549

1UI Data Staggering

TODO 📅

1UI Pulse Generator

duty correction & delay adjustment

TODO 📅

DAC Driver SNDR

TODO 📅

Eye Linearity vs. RLM (Relative Level Mismatch)

TODO 📅

Chaowaroj (Max) Wanotayaroj. Introduction to PAM4 [https://indico.cern.ch/event/979659/contributions/4127016/attachments/2159338/3642883/PAM4Eval%20-%20Dec2020%20Seminar.pdf]

CML vs. SST based driver

image-20240825194548697

Design Challenges Of High-Speed Wireline Transmitters [https://semiengineering.com/design-challenges-of-high-speed-wireline-transmitters/]

image-20250607090928137

image-20250607091140352

the resistance of MOS is not highly controlled -> \(R_T + Z_N\)

image-20250607091858740

Peak power constraint of TX FIR

image-20250514215647905

Due to circuit limitation, circuit cannot have arbitrarily large voltage on the output, i.e. a limited maximum swing. In order to create the high frequency shape, the best we can do is lower DC gain (low frequency gain < 1)

  • FIR is not increasing the amplitude on the edges
  • FIR is reducing the inner eye diagram

The maximum swing stays the same, \(\sum_i |c_i|=1\)

Circuit Insights @ ISSCC2025: Circuits for Wireline Communications - Kevin Zheng [https://youtu.be/8NZl81Dj45M?si=2a8FdfGNP6yBgIW8&t=829]

SST Driver

sharing termination in SST transmitter

tx_leg.drawio

Sharing termination keep a constant current through leg, which improve TX speed in this way. On the other hand, the sharing termination facilitate drain/source sharing technique in layout.

pull-up and pull-down resistor

sst-evolution

Original stacked structure

Pro's:

​ smaller static current when both pull up and pull down path is on

Con's:

​ slowly switching due to parasitic capacitance behind pull-up and pull-down resistor

with single shared linearization resistor

Pro's:

​ The parasitic capacitance behind the resistor still exists but is now always driven high or low actively

Con's:

​ more static current

VM Driver Equalization - differential ended termination

\[ V_o = D_{n+1}C_{-1}+D_nC_0+D_{n-1}C_{+1} \]

where \(D_n \in \{-1, 1\}\)

vdrv.drawio \[ V_{\text{rx}} = V_{\text{dd}} \frac{(R_2-R_1)R_T}{R_1R_T+R_2R_T+R_1R_2} \] With \(R_u=(L+M+N)R_T\)

Normalize above equation, obtain \[ V_{\text{rx,norm}} = \frac{(R_2-R_1)R_T}{R_1R_T+R_2R_T+R_1R_2} \]

\(D_{n-1}\) \(D_{n}\) \(D_{n+1}\)
\(C_{-1}\) 1 -1 -1
\(C_0\) -1 1 -1
\(C_{+1}\) -1 -1 1

Where precursor \(R_L = L\times R_T\), main cursor \(R_M = M\times R_T\) and post cursor \(R_N = N\times R_T\)

image-20220709151054840

Equation-1

\(D_{n-1}D_nD_{n+1}=1,-1,-1\)

pre.drawio

\[\begin{align} R_1 &= R_N \\ &= \frac{R_u}{N} \\ R_2 &= R_L\parallel R_M \\ &= \frac{R_u}{L+M} \end{align}\]

We obtain \[ V_{L}= \frac{1}{2}\cdot\frac{N-(L+M)}{L+M+N} \]

Equation-2

\(D_{n-1}D_nD_{n+1}=-1,1,-1\)

main.drawio

with \(R_1=R_T\) and \(R_2=+\infty\), we obtain \[ V_M = \frac{1}{2} \]

Equation-3

\(D_{n-1}D_nD_{n+1}=-1,-1,1\)

\[\begin{align} R_1 &= R_L \\ &= \frac{R_u}{L} \\ R_2 &= R_N\parallel R_M \\ &= \frac{R_u}{N+M} \end{align}\]

We obtain \[ V_N = \frac{1}{2}\cdot\frac{L-(N+M)}{L+M+N} \]

Obtain FIR coefficients

We define \[\begin{align} l &= \frac{L}{L+M+N} \\ m &= \frac{M}{L+M+N} \\ n &= \frac{N}{L+M+N} \end{align}\]

where \(l+m+n=1\)

Due to Eq1 ~ Eq3 \[ \left\{ \begin{array}{cl} C_{-1}-C_0-C_1 & = \frac{1}{2}(n-l-m) \\ -C_{-1}+C_0-C_1 & = \frac{1}{2} \\ -C_{-1}-C_0+C_1 & = \frac{1}{2}(l-n-m) \end{array} \right. \] After scaling, we get \[ \left\{ \begin{array}{cl} C_{-1}-C_0-C_1 & = -l-m+n \\ -C_{-1}+C_0-C_1 & = l+m+n \\ -C_{-1}-C_0+C_1 & = l-m-n \end{array} \right. \] Then, the relationship between FIR coefficients and legs is clear, i.e. \[\begin{align} C_{-1} &= -\frac{L}{L+M+N} \\ C_{0} &= \frac{M}{L+M+N} \\ C_{1} &= -\frac{N}{L+M+N} \end{align}\]

For example, \(C_{-1}=-0.1\), \(C_0=0.7\) and \(C_1=-0.2\) \[ H(z) = -0.1+0.7z^{-1}-0.2z^{-2} \] image-20220709185832444

1
2
3
4
5
6
7
w = [-0.1, 0.7, -0.2];
Fs = 32e9;
[mag, w] = freqz(w, 1, [], Fs);
plot(w/1e9, abs(mag));
xlabel('Freq(GHz)');
ylabel('mag');
grid on;

VM Driver Equalization - single ended termination

Equation-1

pre_se.drawio

\[\begin{align} V_{\text{rxp}} &= \frac{1}{2} \cdot \frac{N}{L+M+N} \\ V_{\text{rxm}} &= \frac{1}{2} \cdot \frac{L+M}{L+M+N} \end{align}\] So \[ V_{L}= \frac{1}{2}\cdot\frac{N-(L+M)}{L+M+N} \] which is same with differential ended termination

Equation-2

main_se.drawio

\[\begin{align} V_{\text{rxp}} &= \frac{1}{2} \\ V_{\text{rxm}} &= 0 \end{align}\] So \[ V_{M}= \frac{1}{2} \] which is same with differential ended termination

Equation-3

\[ V_{N}= \frac{1}{2}\cdot\frac{L-(N+M)}{L+M+N} \]

Obtain FIR coefficients

Same with differential ended termination driver.

Basic Feed Forward Equalization Theory

image-20220709111229772

image-20220709112543338

image-20220709125046329

Pre-cursor FFE can compensate phase distortion through the channel

image-20220709130050057

Single-ended termination

Differential termination

TX Serializer

mux timing

mux2-1.drawio

divider latch timing

div2-latch.drawio

Two latches

two-latch.drawio

PAM4 TX

image-20220717010007963

Here, \(d_{\text{LSB}} \in \{-1, 1\}\), \(d_{\text{MSB}} \in \{-2, 2\}\) and \(d' \in \{ -3, -1, 1, 3 \}\)

Implementation-1 could potentially experience performance degradation due to

  1. Clock skew, \(\Delta t\), could make the eye misaligned horizontally
  2. Gain mismatch, \(\Delta G\), could cause eye nonlinearity
  3. Bandwidth mismatch, \(\Delta f_{\text{BW}}\), could make the eye misaligned vertically

image-20220717011129124

Typically, a 3-tap FIR (pre + main + post) TX de-emphasis is used

3-tap FIR results in \(4^3 = 64\) possible distinct signal levels

msb_lsb.drawio

\[\begin{align} R_U^M \parallel R_D^M &= \frac{3R_T}{2}\\ R_U^L \parallel R_D^L &= 3R_T \end{align}\]

Thevenin Equivalent Circuit is thevenin_1.drawio

Which can be simpified as thevenin_2.drawio \[\begin{align} V_{\text{rx}} &= \frac{1}{2}(V_p - V_m) \\ &= \frac{1}{2}(\frac{2}{3}(2V_{\text{MSB}}+V_{\text{LSB}})-1) \\ &=\frac{1}{3}(2V_{\text{MSB}}+V_{\text{LSB}})-\frac{1}{2} \end{align}\]

The above eqations demonstrate that the output \(V_{\text{rx}}\) is the linear sum of MSB and LSB; LSB and MSB have relative weight, i.e. 1 for LSB and 2 for MSB.

Assume pre cusor has \(L\) legs, main cursor \(M\) legs and post cursor \(N\) legs, which is same with the convention in "Voltage-Mode Driver Equalization"

The number of legs connected with supply can expressed as \[ n_{up} = (1-d_{n+1})L + d_{n}M + (1-d_{n-1})N \] Where \(d_n \in \{0, 1\}\), or \[ n_{up} = \frac{1}{2}(-D_{n+1}+1)L + \frac{1}{2}(D_{n}+1)M + \frac{1}{2}(-D_{n-1}+1)N \] Where \(D_n \in \{-1, +1\}\)

Then the number of legs connected with ground is \[ n_{dn}=L+M+N-n_{up} \] where \(n_{up}+n_{dn}=L+M+N\)

Voltage resistor divider \[\begin{align} V_o &= \frac{\frac{R_{U}}{n_{dn}}}{\frac{R_U}{n_{dn}}+\frac{R_U}{n_{up}}} \\ &= \frac{1}{2}- \frac{1}{2}D_{n+1}\frac{L}{L+M+N}+ \frac{1}{2}D_{n}\frac{M}{L+M+N}-\frac{1}{2}D_{n-1}\frac{N}{L+M+N} \\ &= \frac{1}{2}-\frac{1}{2}D_{n+1}\cdot l+ \frac{1}{2}D_{n}\cdot m-\frac{1}{2}D_{n-1}\cdot n \end{align}\]

where \(l+m+n=1\)

\(V_{\text{MSB}}\) and \(V_{\text{LSB}}\) can be obtained

\[\begin{align} V_{\text{MSB}} &= \frac{1}{2}-\frac{1}{2}D^{\text{MSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{MSB}}_{n}\cdot m-\frac{1}{2}D^{\text{MSB}}_{n-1}\cdot n \\ V_{\text{LSB}} &= \frac{1}{2}-\frac{1}{2}D^{\text{LSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{LSB}}_{n}\cdot m-\frac{1}{2}D^{\text{LSB}}_{n-1}\cdot n \end{align}\]

Substitute the above equation into \(V_{\text{rx}}\), we obtain the relationship between driver legs and FFE coefficients

\[\begin{align} V_{\text{rx}} &=\frac{1}{3}(2V_{\text{MSB}}+V_{\text{LSB}})-\frac{1}{2} \\ &= \frac{1}{3} \left\{ 2\left( \frac{1}{2}-\frac{1}{2}D^{\text{MSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{MSB}}_{n}\cdot m- \frac{1}{2}D^{\text{MSB}}_{n-1}\cdot n \right) + \left( \frac{1}{2}-\frac{1}{2}D^{\text{LSB}}_{n+1}\cdot l+ \frac{1}{2}D^{\text{LSB}}_{n}\cdot m- \frac{1}{2}D^{\text{LSB}}_{n-1}\cdot n \right) \right\}-\frac{1}{2} \\ &= \left(-\frac{l}{6} \cdot 2 \cdot D^{\text{MSB}}_{n+1}+ \frac{m}{6} \cdot 2 \cdot D^{\text{MSB}}_{n}- \frac{n}{6} \cdot 2 \cdot D^{\text{MSB}}_{n-1}\right) + \left(-\frac{l}{6} \cdot D^{\text{LSB}}_{n+1}+ \frac{m}{6} \cdot D^{\text{LSB}}_{n}- \frac{n}{6} \cdot D^{\text{LSB}}_{n-1}\right) \\ &= -\frac{l}{6}(2 \cdot D^{\text{MSB}}_{n+1}+D^{\text{LSB}}_{n+1})+ \frac{m}{6}(2\cdot D^{\text{MSB}}_{n}+D^{\text{LSB}}_{n}) -\frac{n}{6}(2\cdot D^{\text{MSB}}_{n-1}+D^{\text{LSB}}_{n-1}) \end{align}\]

After scaling, we obtain \[ V_{\text{rx}} = -l\cdot(2 \cdot D^{\text{MSB}}_{n+1}+D^{\text{LSB}}_{n+1})+ m\cdot(2\cdot D^{\text{MSB}}_{n}+D^{\text{LSB}}_{n}) - n \cdot(2\cdot D^{\text{MSB}}_{n-1}+D^{\text{LSB}}_{n-1}) \] Where \(C_{-1} = l\), \(C_0 = m\) and \(C_{1}=n\), which is same with that of NRZ

Test Challenges

PAM4 Transmitter Test Challenges [https://harrisburg.psu.edu/files/pdf/16861/2019/05/06/tektronix_penn_state_si_april_12_2019.pdf]

PAM4 Signaling in High Speed Serial Technology: Test, Analysis, and Debug [https://download.tek.com/document/55W_60273_1_HR_Letter.pdf]

TODO 📅

reference

Noman Hai, Synopsys. CICC 2025 Circuit Insights: Basics of Wireline Transmitter Circuits [https://youtu.be/oofViBGlrjM?si=WZnOqtDVG3iDnBHI]

—, Synopsys. Design Challenges Of High-Speed Wireline Transmitters [https://semiengineering.com/design-challenges-of-high-speed-wireline-transmitters/]

—, Synopsys. CMOS Circuit Techniques for Wireline Transmitters [https://www.synopsys.com/webinars/wireline-transmitters-part-1.html]

Jihwan Kim, CICC 2022, ES4-4: Transmitter Design for High-speed Serial Data Communications

—, ISSCC2019 F5: Design Techniques for a 112Gbs PAM-4 Transmitter

Friedel Gerfers, ISSCC2021 T6: Basics of DAC-based Wireline Transmitters [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T6.pdf]

Tod Dickson, IBM. High-Speed CMOS Serial Transmitters for 56-112Gb/s Electrical Interconnects [https://www.youtube.com/watch?v=g1pcZabsRNc]

B. Razavi, "Design Techniques for High-Speed Wireline Transmitters," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 53-66, 2021, [https://www.seas.ucla.edu/brweb/papers/Journals/BROJSSCSep21.pdf]


Yvain Thonnart, CEA-LIST. ISSCC2021 T8: On-Chip Interconnects: Basic Concepts, Designs and Future Opportunities [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T8.pdf]

Mozhgan Mansuri. ISSCC2021 SC3: Clocking, Clock Distribution, and Clock Management in Wireline/Wireless Subsystems [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/SHORT%20COURSE/ISSCC2021-SC3.pdf]

Sam Palermo. High-Performance SERDES Design" Online Course (2025): Current-Mode DAC TX [https://youtu.be/A2VsvCPDWxk?si=14J7JC_bnejAlHGW]

PCIe® 6.0 Specification: The Interconnect for I/O Needs of the Future PCI-SIG® Educational Webinar Series, [https://pcisig.com/sites/default/files/files/PCIe%206.0%20Webinar_Final_.pdf]

J. F. Bulzacchelli et al., "A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Transceiver in 32-nm SOI CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3232-3248, Dec. 2012, doi: 10.1109/JSSC.2012.2216414.

C. Menolfi et al., "A 112Gb/S 2.6pJ/b 8-Tap FFE PAM-4 SST TX in 14nm CMOS," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 104-106, doi: 10.1109/ISSCC.2018.8310205.

E. Chong et al., "A 112Gb/s PAM-4, 168Gb/s PAM-8 7bit DAC-Based Transmitter in 7nm FinFET," ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), 2021, pp. 523-526, doi: 10.1109/ESSCIRC53450.2021.9567801.

Wang, Z., Choi, M., Lee, K., Park, K., Liu, Z., Biswas, A., Han, J., Du, S., & Alon, E. (2022). An Output Bandwidth Optimized 200-Gb/s PAM-4 100-Gb/s NRZ Transmitter With 5-Tap FFE in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 57(1), 21-31. https://doi.org/10.1109/JSSC.2021.3109562

J. Kim et al., "A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 102-104, doi: 10.1109/ISSCC.2018.8310204.

Gm-TIA CTLE

CTLE, with Gm + TIA structure

image-20250904202636824

Pisati, et.al., "Sub-250mW 1-to-56Gb/s Continuous-Range PAM-4 42.5dB IL ADC/DAC- Based Transceiver in 7nm FinFET," 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019 [https://sci-hub.se/10.1109/ISSCC.2019.8662428]

Z. Li, M. Tang, T. Fan and Q. Pan, "A 56-Gb/s PAM4 Receiver Analog Front-End With Fixed Peaking Frequency and Bandwidth in 40-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 9, pp. 3058-3062, Sept. 2021 [slides] [paper]

K. Kwon et al., "A 212.5Gb/s Pam-4 Receiver With Mutual Inductive Coupled Gm-Tia in 4nm Finfet," 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2025

Distortion & Nonlinearity

S. Stegemann, W. Mathis. MOS-AK 2012: Interference and Distortion Analysis for Nonlinear Analog Circuits [https://www.mos-ak.org/dresden_2012/publications/T8_Stegemann_MOS-AK_Desden_12.pdf]

Ali Sheikholeslami. A-SSCC 2024 insight: Noise and Distortion, [https://youtu.be/bvsJgHJ19jI]

B. Razavi, "Design considerations for direct-conversion receivers," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 6, pp. 428-435, June 1997 [http://www.seas.ucla.edu/brweb/papers/Journals/RTCAS97.pdf]

Two-Tone Intermodulation [https://www.ittc.ku.edu/~jstiles/622/handouts/Two-Tone%20Intermodulation.pdf]

Intermodulation Distortion [https://www.ittc.ku.edu/~jstiles/622/handouts/Intermodulation%20Distortion.pdf]

A. Sheikholeslami, "“Noise and Distortion, Part II” [Circuit Intuitions]," in IEEE Solid-State Circuits Magazine, vol. 16, no. 4, pp. 8-11, Fall 2024

A. Sheikholeslami, "Noise and Distortion, Part III [Circuit Intuitions]," in IEEE Solid-State Circuits Magazine, vol. 17, no. 1, pp. 8-11, winter 2025

Ali Sheikholeslami, University of Toronto, A-SSCC 2024 Circuit Insights:FT1 Noise and Distortion [link]

image-20250924003304052

image-20250924003422546

Even-Order Distortion

Odd-order distortion: symmetry

Even-Order Distortion: non-symmetry (Effect of Mismatch)

image-20250613235048524


[http://cc.ee.ntu.edu.tw/~ecl/Courses/105AIC/lock/Analog_Chapter_09_Nonlinearity%20and%20Mismatch.pdf]

image-20250613235212237

Negative Capacitance Circuit

Negative Miller Capacitance

S. Gondi and B. Razavi, "Equalization and Clock and Data Recovery Techniques for 10-Gb/s CMOS Serial-Link Receivers," in IEEE Journal of Solid-State Circuits, vol. 42, no. 9, pp. 1999-2011 [pdf]

Sam Palermo. ECEN620 Lecture 14: Limiting Amplifiers (LAs) [https://people.engr.tamu.edu/spalermo/ecen620/lecture14_ee620_limiting_amps.pdf]

image-20251028221403199

image-20251028232644575 \[ C_{d1} = C_{dd1} + (1+\frac{1}{|A_{gd}|})C_{gd1} \] where \(A_{gd}\lt 0\)

image-20251028232707189

For differential mode input, effective input capacitance \[ C_{in} = C_{gs} +(1+A_{dm}) C_{gd}+\color{red}(1-A_{dm})C_n \] and effective output capacitance \[ C_{out} = C_{dd} + (1+\frac{1}{A_{dm}})C_{gd}+\color{red} (1-\frac{1}{A_{dm}})C_n \] That is \(C_n\) deteriorate the effective output capacitance

For common mode input, effective input capacitance \[ C_{in} = C_{gs} + (1+A_{cm}) C_{gd}+ \color{red}(1+A_{cm})C_n \] and effective output capacitance \[ C_{d1} = C_{dd} + (1+\frac{1}{A_{cm}})C_{gd}+\color{red} (1+\frac{1}{A_{cm}})C_n \] i.e., \(C_n\) deteriorate both effective input capacitance and effective output capacitance, unfortunately


effective input capacitance \(\Pi\) model, which is appropriate for both differential input and common mode input

nmc_pi_in.drawio

Suppose \(C_n=C_{gd}\), effective differential input capacitance is same with effective common-mode input capacitance (\(C_n=\frac{A_{dm}-A_{cm}}{A_{dm}+A_{cm}}C_{gd}\))

XCP with Capacitor

B. Razavi, "The Cross-Coupled Pair - Part III [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Issue. 1, pp. 10-13, Winter 2015. [https://www.seas.ucla.edu/brweb/papers/Journals/BR_Magzine3.pdf]

S. Galal and B. Razavi, "10-Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2138-2146, Dec. 2003.[https://www.seas.ucla.edu/brweb/papers/Journals/G&RDec03_2.pdf]

The Cross-Coupled Pair (XCP) can operate as an impedance negator [a.k.a. a negative impedance converter (NIC)]

A common application is to create a negative capacitance that can cancel the positive capacitance seen at a port, thereby improving the speed

image-20240922174319496 \[ I_{NIC} =\frac{V_{im} - V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} = \frac{-2V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} \] Therefore \[ Z_{NIC} = \frac{V_{ip} - V_{im}}{I_{NIC}}=\frac{2V_{ip}}{I_{NIC}} =- \frac{2}{g_m}-\frac{1}{sC_c} \] half-circuit

If \(C_{gd}\) is considered, and apply miller effect. half equivalent circuit is shown as below

nic.drawio

Equalization Noise Enhancement

Advanced Signal Integrity for High-Speed Digital Designs, S. H. Hall and H. L. Heck, John Wiley & Sons, 2009

image-20251021211402274

image-20250904235434247

Assuming \(\mathrm{SNR}(f) = \frac{S_x(f)}{S_n(f)}\)

input network

image-20250706110415914


image-20250611075951974

1
2
3
4
5
>> 10e6/2/pi/400/50

ans =

79.5775

T-Coil Peaking

Capacitor Splitting + Magnetic Coupling

image-20251022234854155

image-20251022235133839

Active Inductor

B. Razavi, "The Active Inductor [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 12, no. 2, pp. 7-11, Spring 2020 [https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_2_2020.pdf]

activeInd

\[\begin{align} A &= \frac{g_mR_L}{1+(g_{\text{m}_{\text{dio}}}+ g_{\text{ds}_\text{tot}})R_L}\cdot \frac{1+R_pC_Ps}{1+\frac{(1+g_{\text{ds}_{\text{tot}}}R_L)R_PC_P+C_PR_L+R_LC_L}{1+(g_{\text{m}_{\text{dio}}}+g_{\text{ds}_\text{tot}})R_L}s + \frac{R_LC_LR_PC_P}{1+(g_{\text{m}_\text{dio}}+g_{\text{ds}_{\text{tot}}})R_L}s^2} \\ &= \frac{g_mR_L}{1+(g_{\text{m}_{\text{dio}}}+ g_{\text{ds}_{\text{tot}}})R_L}\cdot \frac{R_PC_P}{ \frac{R_LC_LR_PC_P}{1+(g_{\text{m}_{\text{dio}}}+g_{\text{ds}_{\text{tot}}})R_L}}\cdot \frac{1/(R_PC_P)+s}{s^2 + \frac{(1+g_{\text{ds}_{\text{tot}}}R_L)R_PC_P+C_PR_L+R_LC_L}{R_PC_P}s + \frac{1+(g_{\text{m}_{\text{dio}}}+g_{\text{ds}_\text{tot}})R_L}{R_LC_LR_PC_P}} \\ &= A_0 \cdot A(s) \end{align}\]

That is

\[\begin{align} \omega_z &= \frac{1}{R_PC_P} \tag{1} \\ \omega_n &= \sqrt{\frac{1+(g_{\text{m}_{\text{dio}}}+ g_{\text{ds}_\text{tot}})R_L}{R_LC_LR_PC_P}} = \sqrt{\omega_{p0}\omega_z} \\ \zeta & = \frac{(1+g_{\text{ds}_\text{tot}}R_L)R_PC_P+C_PR_L+R_LC_L}{R_PC_P} \frac{1}{2 \omega_n} \end{align}\]

Where \[\begin{align} \omega_{p0} &= \frac{1}{(R_L||\frac{1}{g_{\text{m}_{\text{dio}}}}||\frac{1}{g_{\text{m}_{\text{tot}}}})C_L} \tag{2} \end{align}\]

Here, relate \(\omega_{p0}\) and \(\omega_z\) by coefficient \(\alpha\) \[ \omega_{p0} = \alpha \cdot \omega_z \tag{3} \] This way \[ \omega_n= \sqrt{\alpha}\cdot \omega_z \]

\[ \zeta = \frac{1}{2}(K\sqrt{\alpha}+\frac{1+C_P/C_L}{\sqrt{\alpha}}) \tag{4} \]

where \[ K = \frac{R_L||\frac{1}{g_{\text{m}_{\text{dio}}}}||\frac{1}{g_{\text{m}_{\text{tot}}}}}{R_L||g_\text{ds\_tot}} \]

And \(A(s)\) can be expressed as \[ A(s) = \frac{\frac{s}{\omega_z}+1}{\frac{s^2}{\omega_n^2}+2\frac{\zeta}{\omega_n}s+1} \] It magnitude in dB \[ A_\text{dB} = 10\log\frac{1+(\omega/\omega_z)^2}{1+(\omega/\omega_n)^4+2\omega^2(2\zeta^2-1)/\omega_n^2} \] Substitute \(\omega_n\) with Eq (2), followed is obtained \[ A_\text{dB} = 10\log{\frac{\alpha^2(\omega_z^4 + \omega_z^2\omega^2)}{\alpha^2\omega_z^4+\omega^4+2\alpha\omega_z^2(2\zeta^2-1)\omega^2}} \] peaking frequency \[ \omega_\text{peak} = \omega_z\cdot \sqrt{\sqrt{(\alpha+1)^2 - 4\alpha \zeta^2}-1} \] If \(\zeta=1\) \[\begin{align} \omega_{A_\text{dB = 0dB} }&= \sqrt{1-2/\alpha}\cdot \omega_{p0} \\ \omega_\text{peak} &= \omega_z\sqrt{\alpha-2} \\ A_\text{dB,peak} &= 10\log\frac{\alpha^2}{4(\alpha-1)} \end{align}\]

Transformer

任何封闭电路中感应电动势大小,等于穿过这一电路磁通量的变化率。 \[ \epsilon = -\frac{d\Phi_B}{dt} \] 其中 \(\epsilon\)是电动势,单位为伏特

\(\Phi_B\)是通过电路的磁通量,单位为韦伯

电动势的方向(公式中的负号)由楞次定律决定

楞次定律: 由于磁通量的改变而产生的感应电流,其方向为抗拒磁通量改变的方向。

在回路中产生感应电动势的原因是由于通过回路平面的磁通量的变化,而不是磁通量本身,即使通过回路的磁通量很大,但只要它不随时间变化,回路中依然不会产生感应电动势。

自感电动势

当电流\(I\)随时间变化时,在线圈中产生的自感电动势为 \[ \epsilon = -L\frac{dI}{dt} \]

image-20240713131201618

image-20251022234419312

image-20240713145005306

image-20240713145212327


image-20240713140911612

image-20240713135148710

image-20240713135236291

同名端:当两个电流分别从两个线圈的对应端子流入 ,其所 产生的磁场相互加强时,则这两个对应端子称为同名端。

image-20240713142238398

image-20240713142249362

image-20240713142506673

reference

J. Kim et al., "A 112Gb/s PAM-4 transmitter with 3-Tap FFE in 10nm CMOS," 2018 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018 [https://2024.sci-hub.se/6715/9a3d5a4825e551544403f87f0b9f6a89/10.1109@ISSCC.2018.8310204.pdf] [slides]

Miguel Gandara. CICC2025 Circuits Insights: Wireline Receiver Circuits [https://youtu.be/X4JTuh2Gdzg]


S. Shekhar, J. S. Walling and D. J. Allstot, "Bandwidth Extension Techniques for CMOS Amplifiers," in IEEE Journal of Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006 [pdf]

David J. Allstot Bandwidth Extension Techniques for CMOS Amplifiers [https://ewh.ieee.org/r5/denver/sscs/Presentations/2007_08_Allstot.pdf]

B. Razavi, "The Bridged T-Coil [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Volume. 7, Issue. 40, pp. 10-13, Fall 2015 [https://www.seas.ucla.edu/brweb/papers/Journals/BRFall15TCoil.pdf]

—, "The Design of Broadband I/O Circuits [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 13, Issue. 2, pp. 6-15, Spring 2021 [http://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_2_2021.pdf]

Deog-Kyoon Jeong. Topics in IC Design: T-Coil [pdf]

Cowan G. Mixed-Signal CMOS for Wireline Communication: Transistor-Level and System-Level Design Considerations. Cambridge University Press; 2024

J. Paramesh and D. J. Allstot, "Analysis of the Bridged T-Coil Circuit Using the Extra-Element Theorem," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 12, pp. 1408-1412, Dec. 2006 [https://sci-hub.st/10.1109/TCSII.2006.885971]

S. C. D. Roy, "Comments on "Analysis of the Bridged T-coil Circuit Using the Extra-Element Theorem," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 8, pp. 673-674, Aug. 2007 [https://sci-hub.st/10.1109/TCSII.2007.899834]

Starič, Peter and Erik Margan. “Wideband amplifiers.” (2006) [pdf]

Bob Ross. IBIS Summit [T-Coils and Bridged-T Networks], [T-Coil Topics]

A. A. Abidi, "The T-Coil Circuit Demystified," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 72, no. 9, pp. 4469-4480, Sept. 2025

S. Lin, D. Huang and S. Wong, "Pi Coil: A New Element for Bandwidth Extension," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 6, pp. 454-458, June 2009

M. Kossel et al., "A T-Coil-Enhanced 8.5 Gb/s High-Swing SST Transmitter in 65 nm Bulk CMOS With <−16 dB Return Loss Over 10 GHz Bandwidth," in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2905-2920, Dec. 2008 [https://web.mit.edu/magic/Public/papers/04684644.pdf]


S. Galal and B. Razavi, "Broadband ESD protection circuits in CMOS technology," in IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003, doi: 10.1109/JSSC.2003.818568.

M. Ker and Y. Hsiao, "On-Chip ESD Protection Strategies for RF Circuits in CMOS Technology," 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, 2006, pp. 1680-1683, doi: 10.1109/ICSICT.2006.306371.

M. Ker, C. Lin and Y. Hsiao, "Overview on ESD Protection Designs of Low-Parasitic Capacitance for RF ICs in CMOS Technologies," in IEEE Transactions on Device and Materials Reliability, vol. 11, no. 2, pp. 207-218, June 2011, doi: 10.1109/TDMR.2011.2106129.

Kosnac, Stefan (2021) Analysis of On-Chip Inductors and Arithmetic Circuits in the Context of High Performance Computing [https://archiv.ub.uni-heidelberg.de/volltextserver/30559/1/Dissertation_Stefan_Kosnac.pdf]

Chapter 4.5. High Frequency Passive Devices [https://www.cambridge.org/il/files/7713/6698/2369/HFIC_chapter_4_passives.pdf]


Elad Alon, ISSCC 2014, "T6: Analog Front-End Design for Gb/s Wireline Receivers" [pdf]

Byungsub Kim, ISSCC 2022, "T11: Basics of Equalization Techniques: Channels, Equalization, and Circuits"

K. Yadav, P. -H. Hsieh and A. Chan Carusone, "Linearity Analysis of Source-Degenerated Differential Pairs for Wireline Applications," in IEEE Open Journal of Circuits and Systems [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10769573]

Minsoo Choi et al., "An Approximate Closed-Form Channel Model for Diverse Interconnect Applications," IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 61, no. 10, pp. 3034-3043, Oct. 2014.

A resonant circuit refers to an electrical circuit using circuit elements such as an inductor (L) and a capacitor (C) to cause resonance at a specific frequency.

There are two types of resonant circuits:

  • series resonant circuits
  • parallel resonant circuits

In a series resonant circuit, the impedance of the circuit reaches its minimum value at resonance, whereas in a parallel resonant circuit, the impedance reaches its maximum value

image-20251027213420942

LC Resonator

image-20240826223955851

Complex Conjugate Zeros

image-20240826224132736

Complex Conjugate Poles

\(\zeta \to 0\) push \(|G(s)\approx \frac{1}{2\zeta} \to+\infty\)

image-20251027212546424

image-20240826224317197


image-20240826224651954

image-20240826224823886

Non ideal capacitor & inductor

Tank Circuits/Impedances [https://stanford.edu/class/ee133/handouts/lecturenotes/lecture5_tank.pdf]

Resonant Circuits [https://web.ece.ucsb.edu/~long/ece145b/Resonators.pdf]

Series & Parallel Impedance Parameters and Equivalent Circuits [https://assets.testequity.com/te1/Documents/pdf/series-parallel-impedance-parameters-an.pdf]

ES Lecture 35: Non ideal capacitor, Capacitor Q and series RC to parallel RC conversion [https://youtu.be/CJ_2U5pEB4o?si=4j4CWsLSapeu-hBo]

Capacitor

image-20231224163730529


image-20251009211423154

image-20251009211708604

\[ Q_s = \frac{X_s}{R_s} = X_p\frac{Q_p^2}{Q_p^2+1}\cdot \frac{Q_p^2+1}{R_p} =\frac{Q_p^2}{R_p/X_p}=Q_p \]

So long as \(Q_s\gg 1\) \[\begin{align} R_p &\approx Q_s^2R_s \\ C_p &\approx C_s \end{align}\]


image-20251011224853381

image-20240119001309410

Inductor

image-20231224163740411

So long as \(Q_s\gg 1\) \[\begin{align} R_p &\approx Q_s^2R_s \\ L_p &\approx L_s \end{align}\]

SRF (Self-Resonant Frequency)

[Understanding RF Inductor Specifications, https://www.ece.uprm.edu/~rafaelr/inel5325/SupportDocuments/doc671_Selecting_RF_Inductors.pdf]

[RFIC-GPT Wiki, https://wiki.icprophet.net/]

image-20240802210109935

\[ f_\text{SRF} = \frac{1}{2\pi \sqrt{LC}} \] The SRF of an inductor is the frequency at which the parasitic capacitance of the inductor resonates with the ideal inductance of the inductor, resulting in an extremely high impedance. The inductance only acts like an inductor below its SRF

image-20241221092745311

  • For choking applications, chose an inductor whose SRF is at or near the frequency to be attenuated

  • For other applications, the SRF should be at least 10 times higher than the operating frequency

    it is more important to have a relatively flat inductance curve (constant inductance vs. frequency) near the required frequency

antiresonance

TODO 📅

reference

Hossein Hashemi, RF Circuits, [https://youtu.be/0f3yZMvD2Jg?si=2c1Q4y6WJq8Jj8oN]

Resonant Circuits: Resonant Frequency and Q Factor [https://techweb.rohm.com/product/circuit-design/electric-circuit-design/18332/]

J. Nako, G. Tsirimokou, C. Psychalinos and A. S. Elwakil, "Approximation of First–Order Complex Resonators in the Frequency–Domain," in IEEE Access, vol. 13, pp. 54494-54503, 2025 [pdf]

How to generate complex poles without inductor? [https://a2d2ic.wordpress.com/2020/02/19/basics-on-active-rc-low-pass-filters/]

PFD/CP Modelling

image-20250807225013850

pfdcp-lmdl.drawio


image-20250807230740496

Deog-Kyoon Jeong. Topics in IC Design 2.1 Introduction to Phase-Locked Loop [pdf]

Charge Pump Noise

Cyclostationary Noise (Modulated Noise) [https://raytroop.github.io/2024/04/27/noise/#cyclostationary-noise-modulated-noise]

image-20250726174414209


Saurabh Saxena,Phase Locked Loops: Noise Simulations for CP-PLL Blocks [https://youtu.be/Q1libz-XqRw]

image-20250726183455160


image-20240928013058435

Michael H. Perrott, PLL Design Using the PLL Design Assistant Program. [https://designers-guide.org/forum/Attachments/pll_manual.pdf]

M.H. Perrott, M.D. Trott, C.G. Sodini, "A Modeling Approach for Sigma-Delta Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis", JSSC, vol 38, no 8, pp 1028-1038, Aug 2002. [https://www.cppsim.com/Publications/JNL/perrott_jssc02.pdf]

charge pump with amplifier

image-20241002211524347

Young, I.A., Greason, J.K., Wong, K.L.: A PLL Clock Generator with 5 to 110MHz of Lock Range for Microprocessors. IEEE Journal of Solid-State Circuits 27(11), 1599– 1607 (1992) [https://people.engr.tamu.edu/spalermo/ecen620/pll_intel_young_jssc_1992.pdf]

Johnson, M., Hudson, E.: A variable delay line PLL for CPU-coprocessor synchronization. IEEE Journal of Solid-State Circuits 23(10), 1218–1223 (1988) [https://sci-hub.se/10.1109/4.5947]

Sam Palermo, Lecture 5: Charge Pump Circuits, ECEN620: Network Theory Broadband Circuit Design Fall 2024 [https://people.engr.tamu.edu/spalermo/ecen620/lecture05_ee620_charge_pumps.pdf]

Non-ideal Effects in Charge Pump

The periodic signal on VCTRL modulates the VCO, giving rise to deterministic jitter


  • Timing Offsets Between Up and Dn Pulses
  • Mismatch Between Charge-Pump Current Sources
  • Incomplete Settling of Charge-Pump Currents
  • Finite Output Resistance of the Charge Pump

Up/Dn Timing Offset

image-20241222171705612

If Dn pulse arrives \(\Delta T\) after the Up pulse, the steady-state VCTRL will be slightly lower than it would be without the \(\Delta T\) mismatch so as to return the VCO's phase to match the reference clocks.

Vice versa, if If Up pulse arrives \(\Delta T\) after the Dn pulse, the steady-state VCTRL will be slightly higher than without \(\Delta T\) mismatch

Current Sources Mismatch

image-20241222174620713

image-20241222174718564

Incomplete Settling

TODO 📅

W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 1999, pp. 545-548 vol.2 [pdf]

Cowan G. Mixed-Signal CMOS for Wireline Communication: Transistor-Level and System-Level Design Considerations. Cambridge University Press; 2024

2nd loop filter

PI (proportional - integral) Loop Filter

image-20240907123938255

image-20240907124029346

image-20240907124018476

PFD Deadzone

Dead zone induced by incomplete settling of charge-pump currents

This situation can be avoided by adding additional delay to the AND gate in the PFD

image-20241222190011244

Sam Palermo, "Lecture 4: Phase Detector Circuit" [https://people.engr.tamu.edu/spalermo/ecen620/lecture04_ee620_phase_detectors.pdf]

LPF leakage

image-20241222192007824

For the sake of simplicity, \(V_{ctr}\) looks like a rectangular pulse with an amplitude of \(I_{CP}R_1\) and a duty ratio of (\(I_{leak}/I_{CP}\)), whose first coefficient of Fourier series is

image-20241222200514941

where \(I_\text{leak} \ll I_{CP}\) is assumed

Then, the peak frequency deviation \(\Delta f\) \[ \Delta f = a_1 \cdot K_v = 2I_\text{leak}R_1 K_v \] using narrowband FM approximation, we have \[ P_\text{spur} = 20\log\left(\frac{\Delta f}{2f_\text{ref}}\right) = 20\log\left(\frac{I_\text{leak}R_1 K_v}{f_\text{ref}}\right) \]

W. Rhee, "Design of high-performance CMOS charge pumps in phase-locked loops," 1999 IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 1999, pp. 545-548 vol.2 [pdf]

—. Yu, Z., 2024. Phase-Locked Loops: System Perspectives and Circuit Design Aspects. John Wiley & Sons


image-20241222200158107

[https://lpsa.swarthmore.edu/Fourier/Series/ExFS.html]

reference

Lacaita, Andrea Leonardo, Salvatore Levantino, and Carlo Samori. Integrated frequency synthesizers for wireless systems. Cambridge University Press, 2007.

Saurabh Saxena. Noise Simulations for CP-PLL Blocks [https://youtu.be/Q1libz-XqRw]

—, IIT Madras. CICC2022 Clocking for Serial Links - Frequency and Jitter Requirements, Phase-Locked Loops, Clock and Data Recovery

Helene Thibieroz, Customer Support CIC. Using Spectre RF Noise-Aware PLL Methodology to Predict PLL Behavior Accurately [https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3056e59ea76165373f90152f915a829d25dabebc]


Chembiyan T. Chargepump PLL Basics- From A Control Theoretic Viewpoint [linkedin]

—. Challenges in Chargepump PLL Design- A Qualitative Approach [linkedin]

—. A Unified Approach to Low Noise Loop Design in Chargepump PLLs [linkedin]


Xiang Gao Credo Semiconductor. ISSCC2018 T1: Low-Jitter PLLs for Wireless Transceivers [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T1/T1Visuals.pdf]

Hunting Jitter

Hunting jitter is often referred to as dithering jitter, the periodic time error between data clock and input data, which exhibits a limit-cycle behavior

image-20250819202727871

image-20250819203806711

image-20250819210031102

BB PD

Youngdon Choi, Deog-Kyoon Jeong and W. Kim, "Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery," in IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, no. 11, pp. 775-783, Nov. 2003 [https://sci-hub.st/10.1109/TCSII.2003.819070]

John T. Stonick, ISSCC 2011 TUTORIALS T5: DPLL-Based Clock and Data Recovery [slides transcript]

Walker, Richard. (2003). Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems. [pdf]

—, Clock and Data Recovery for Serial Data Communications, focusing on bang-bang CDR design methodology, ISSCC Short Course, February 2002. [slides]

It's ternary, because early, late and no transition

notice the transition density = 1 in digital PLL

Linearization

The effective PD gain is a function of the input jitter pdf, it enables one to anticipate the effects of input jitter on loop characteristics

BB Gain is the slope of average BB output \(\mu\), versus phase offset \(\phi\), i.e. \(\frac {\partial \mu}{\partial \phi}\),

BB only produces output for a transition and this de-rates the gain. Transition density = 0.5 for random data

\[ K_{BB} = \frac{1}{2}\frac {\partial \mu}{\partial \phi} \]

where \(\mu = (1)\times \mathrm{P}(\text{late}|\phi) + (-1)\times \mathrm{P}(\text{early}|\phi)\)

bb-PDF.drawio

Both jitter and amplitude noise distribution are same, just scaled by slope

Self-Noise Term

One price we pay for BB PD versus linear PD is the self-noise term. For small phase errors BB output noise is the full magnitude of the sliced data

The PD output should be almost 0 for small phase errors. i.e. ideal PD output noise should be 0

\[ \sigma_{BB}^2 = 1^2 \cdot \mathrm{P}(\text{trans}) + 0^2\cdot (1-\mathrm{P}(\text{trans})) = 0.5 \]

image-20241127215947017

Input referred jitter from BB PD is proportional to incoming jitter

image-20241127220933103

gain simulation

L. Avallone, M. Mercandelli, A. Santiccioli, M. P. Kennedy, S. Levantino and C. Samori, "A Comprehensive Phase Noise Analysis of Bang-Bang Digital PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2775-2786, July 2021 [https://sci-hub.st/10.1109/TCSI.2021.3072344]

T. -K. Kuan and S. -I. Liu, "A Bang Bang Phase-Locked Loop Using Automatic Loop Gain Control and Loop Latency Reduction Techniques," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 821-831, April 2016 [https://sci-hub.st/10.1109/JSSC.2016.2519391]

image-20250902215541227

image-20250913192552933

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import matplotlib.pyplot as plt
import numpy as np

N = 2**10
sigma = 0.1
dt = np.random.normal(sigma,size=N)
et = np.sign(dt)

# Eq-(2)
coef_form = np.mean(np.abs(dt)) / np.mean(np.power(dt, 2))
print(f'coef_form: {coef_form}')

# Eq-(9)
coef_gauss = (2/np.pi)**0.5/sigma
print(f'coef_gauss: {coef_gauss}')

# polyfit
coef_fit = np.polyfit(dt, et, 1)
print(f'coef_fit: {coef_fit}')

x = np.linspace(-3.5, 3.5, 1000)
y = coef_fit[0]*x + coef_fit[1]

plt.figure(figsize=(12,6))
plt.plot(dt, et, 'o')
plt.plot(x, y, linewidth=2, linestyle='--')

# Calculate histogram counts and bin edges
counts, bin_edges = np.histogram(dt, bins=100)
# Find the maximum count
max_count = counts.max()
# Create weights to normalize the maximum height to 1
weights = np.ones_like(dt) / max_count
plt.hist(dt, bins=100, weights=weights)

plt.xlabel(r'$\Delta t$')
plt.grid(True)
plt.legend([r'$\Delta t \sim \varepsilon $', r'$x_{fit} \sim y_{fit}$', r'$ \text{hist}_{\Delta t}$'])
plt.show()


# coef_form: 0.7910794009505085
# coef_gauss: 7.978845608028654
# coef_fit: [0.79013999 0.0204332 ]

Pavan, Shanthi, Richard Schreier, and Gabor Temes. (2016). Understanding Delta-Sigma Data Converters. 2nd ed. Wiley. - 2.2.1 Quantizer Modeling

image-20250902212931083 \[ \frac{d\sigma_e^2}{dk} =0\space\space\Rightarrow\space\space k=\frac{\left\langle v,y\right\rangle}{\left\langle y,y \right\rangle} \]

image-20250902231449843

DCO Quantization Noise

TODO 📅

TDC Quantization Noise

TODO 📅

image-20250601122145164

CDR Loop Latency

Amir Amirkhany. ISSCC 2019 "Basics of Clock and Data Recovery Circuits"

CC Chen. Why A Low Loop Latency in A CDR Design? [https://youtu.be/io9WZbhlahU]

—. Why Understanding and Optimizing Loop Latency for A CDR Design? [https://youtu.be/Jyy18865jv8]

image-20250706173343946


image-20250706121529451


image-20241102235118149

image-20241102235145417

loop latency is represented as \(e^{-sD}\) in linear model


image-20241102235736432

image-20241103000223470

image-20241103000653906

Sensitivity to Loop Latency

image-20241103142137640


image-20241103142656134

image-20241103142531277

image-20241103142938907

Optimizing Loop Latency

TODO 📅

CC Chen. Circuit Image: Why Understanding and Optimizing Loop Latency for A CDR Design? [https://youtu.be/Jyy18865jv8?si=uY2HUV8mERLterwH]

DT & CT Spectral Density

image-20250512230604969


[Sampling of WSS process of Systems, Modulation and Noise]

image-20250512233058520

That is \[ P_{x_s x_s} (f)= \frac{1}{T_s}P_{xx}(f) \] In going from discrete time to continuous time, we must add a scale factor \(1/T\), the sample period


image-20250513211531981

reference

Sam Palermo, ECEN620 2024 Lecture 9: Digital PLLs [https://people.engr.tamu.edu/spalermo/ecen620/lecture09_ee620_digital_PLLs.pdf]

Topics in IC(Wireline Transceiver Design) [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%203%20-%20ADPLL.pdf]

Michael H. Perrott, ISSCC 2008 Tutorial on Digital Phase-Locked Loops [https://www.nishanchettri.com/isscc-slides/2008%20ISSCC/Tutorials/T05_Pres.pdf]

—, CICC 2009 Tutorial on Digital Phase-Locked Loops [https://www.cppsim.com/PLL_Lectures/digital_pll_cicc_tutorial_perrott.pdf]

Robert Bogdan Staszewski, CICC 2020: Beyond All-Digital PLL for RF and Millimeter-Wave Frequency Synthesis [link]

Akihide Sai, ISSCC 2023 T5: All-digital PLLs From Fundamental Concepts to Future Trends [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T5.pdf]

Mike Shuo-Wei Chen, CICC 2020 ES2-3: Low-Spur PLL Architectures and Techniques [https://youtu.be/sgPDchYhN-4?si=FAy8N3SuX6vVpYhl]

S. Levantino, "Digital phase-locked loops," 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 2018 [slides]

Saurabh Saxena, IIT Madras. Phase-Locked Loops: Noise Analysis in Digital PLL [https://youtu.be/mddtxcqfiKU?si=yD15KM9WBkT6c68P]


Y. Hu, T. Siriburanon and R. B. Staszewski, "Multirate Timestamp Modeling for Ultralow-Jitter Frequency Synthesis: A Tutorial," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3030-3036, July 2022


Neil Robertson. Digital PLL's -- Part 1 [https://www.dsprelated.com/showarticle/967.php]

Neil Robertson. Digital PLL's -- Part 2 [https://www.dsprelated.com/showarticle/973.php]

Neil Robertson. Digital PLL's -- Part 3 [https://www.dsprelated.com/showarticle/1177.php]

Daniel Boschen. GRCon24 - Quick Start on Control Loops with Python Workshop [video, slides]


L. Avallone, M. Mercandelli, A. Santiccioli, M. P. Kennedy, S. Levantino and C. Samori, "A Comprehensive Phase Noise Analysis of Bang-Bang Digital PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2775-2786, July 2021 [https://sci-hub.st/10.1109/TCSI.2021.3072344]

M. Zanuso, D. Tasca, S. Levantino, A. Donadel, C. Samori and A. L. Lacaita, "Noise Analysis and Minimization in Bang-Bang Digital PLLs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 11, pp. 835-839, Nov. 2009 [https://sci-hub.st/10.1109/TCSII.2009.2032470]

N. Da Dalt, "Linearized Analysis of a Digital Bang-Bang PLL and Its Validity Limits Applied to Jitter Transfer and Jitter Generation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3663-3675, Dec. 2008 [https://sci-hub.st/10.1109/TCSI.2008.925948]

—, "Markov Chains-Based Derivation of the Phase Detector Gain in Bang-Bang PLLs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 1195-1199, Nov. 2006 [https://sci-hub.st/10.1109/TCSII.2006.883197]

—, "A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 1, pp. 21-31, Jan. 2005 [https://sci-hub.se/10.1109/TCSI.2004.840089]

—, "Theory and Implementation of Digital Bang-Bang Frequency Synthesizers for High Speed Serial Data Communications", PhD Dissertation, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany, 2007 [pdf]

Walker, Richard. (2003). Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems. [paper,slides]


hunting jitter

S. Jang, S. Kim, S. -H. Chu, G. -S. Jeong, Y. Kim and D. -K. Jeong, "An Optimum Loop Gain Tracking All-Digital PLL Using Autocorrelation of Bang–Bang Phase-Frequency Detection," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 9, pp. 836-840, Sept. 2015 [https://sci-hub.st/10.1109/TCSII.2015.2435691] [phd thesis]

Deog-Kyoon Jeong. Topics in IC (Wireline Transceiver Design). Lec 3 - All-Digital PLL [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%203%20-%20ADPLL.pdf]

—. Topics in IC (Wireline Transceiver Design). Lec 6 - Clock and Data Recovery [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%206%20-%20Clock%20and%20Data%20Recovery.pdf]

Lee Hae-Chang.: ‘An estimation approach to clock and data recovery’, PhD Thesis, Stanford University, November 2006 [pdf]

J. Kim, Design of CMOS Adaptive-Supply Serial Links, Ph.D. Thesis, Stanford University, December 2002. [pdf]

High-speed Serial Interface 2013. Lect. 16 – Clock and Data Recovery 3 [http://tera.yonsei.ac.kr/class/2013_1_2/lecture/Lect16_CDR-3.pdf]

CC Chen. Why Hunting Jitter Happens in CDR: The Role of Input Jitter and Latency? [https://youtu.be/hPDielPsFgY]

Switched Capacitor Circuits

image-20250607160642574

image-20250607171740269

Clock Feedthrough

aka. LO leakage

TODO 📅

Integrator

TODO 📅

[https://www.eecg.utoronto.ca/~johns/ece1371/slides/10_switched_capacitor.pdf]

[https://www.seas.ucla.edu/brweb/papers/Journals/BRWinter17SwCap.pdf]

[https://class.ece.iastate.edu/ee508/lectures/EE%20508%20Lect%2029%20Fall%202016.pdf]

reference

R. S. Ashwin Kumar, Analog circuits for signal processing [https://home.iitk.ac.in/~ashwinrs/2022_EE698W.html]

R. Gregorian and G. C. Temes. Analog MOS Integrated Circuits for Signal Processing. Wiley-Interscience, 1986 [pdf]

Christian-Charles Enz. "High precision CMOS micropower amplifiers" [pdf]

Boris Murmann. EE315A VLSI Signal Conditioning Circuits


Negar Reiskarimian. CICC 2025 Insight: Switched Capacitor Circuits [https://youtu.be/SL3-9ZMwdJQ]

Temperature compensation for VCO

Temperature compensation for the VCO oscillation frequency is a critical issue

TODO 📅

Leeson Model

M.H. Perrott [https://www.cppsim.com/PLL_Lectures/day2_am.pdf]

—. [https://ocw.mit.edu/courses/6-976-high-speed-communication-circuits-and-systems-spring-2003/ceb3d539691d5393a29af71ae98afb62_lec12.pdf]

Leeson's model is outcome of linearized VCO noise analysis

image-20250920125120068

image-20250920170108939

\[ Q = R_p\omega_0 C_p = \frac{R_p}{\omega_0 L} \]

where \(\omega_0 = \frac{1}{\sqrt{L_pC_p}}\)

image-20250920170331118

[https://stanford.edu/class/ee133/handouts/lecturenotes/lecture5_tank.pdf]

image-20250920171147163

image-20250920171411886


Carlo Samori ISSCC2016 T1: Understanding Phase Noise in LC VCOs

image-20251104233318469

LTV Models

image-20250629065454831

image-20250629073305626

PPV (Perturbation Projection Vector)

A. Demir and J. Roychowdhury, "A reliable and efficient procedure for oscillator PPV computation, with phase noise macromodeling applications," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 2, pp. 188-197, Feb. 2003 [https://sci-hub.se/10.1109/TCAD.2002.806599]

Helene Thibieroz, Customer Support CIC. Using Spectre RF Noise-Aware PLL Methodology to Predict PLL Behavior Accurately [https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3056e59ea76165373f90152f915a829d25dabebc]

Aditya Varma Muppala. Perturbation Projection Vector (PPV) Theory | Oscillators 11 | MMIC 16 [youtu.be, notes]

image-20250920101142887

Limit Cycles

[https://adityamuppala.github.io/assets/Notes_YouTube/MMIC_Limit_Cycles.pdf]

Nonlinear Dynamics

image-20250622202023590

image-20250920101927173

ISF model

image-20251008184336891

image-20251008184349072

C. Livanelioglu, L. He, J. Gong, S. Arjmandpour, G. Atzeni and T. Jang, "19.10 A 4.6GHz 63.3fsrms PLL-XO Co-Design Using a Self-Aligned Pulse-Injection Driver Achieving −255.2dB FoMJ Including the XO Power and Noise," 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2025

image-20251008185243498

image-20251008185406867


image-20250626210829173

[https://adityamuppala.github.io/assets/Notes_YouTube/Oscillators_ISF_model.pdf]

image-20250629080430980

Periodic ISF: Noise Folding

image-20250629080632902

When performing the phase noise computation integral, there will be a negligible contribution from all terms, other than \(n=m\)

image-20250629083344136

image-20250629083453955

Given \(i(t) = I_m \cos[(m\omega_0 +\Delta \omega)t]\),

\[\begin{align} \phi(t) &= \frac{1}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t I_m\cos((m\omega_0 +\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t I_m\cos((m\omega_0 +\Delta \omega)\tau)\cos(n\omega_0\tau)d\tau\right] \\ &= \frac{I_m}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t \cos((m\omega_0 +\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t \frac{\cos((m\omega_0 + \Delta \omega+ n\omega_0)\tau)+ \cos((m\omega_0+\Delta \omega - n\omega_0)\tau)}{2}d\tau\right] \end{align}\]

If \(m=0\) \[ \phi(t) \approx \frac{I_0C_0}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t) \] If \(m\neq 0\) and \(m=n\) \[ \phi(t) \approx \frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t) \]

\(m\omega_0 +\Delta \omega \ge 0\)

image-20250629105156403

image-20250629100444702

A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998

image-20250629102112814


Corrections to "A General Theory of Phase Noise in Electrical Oscillators"

A. Hajimiri and T. H. Lee, "Corrections to "A General Theory of Phase Noise in Electrical Oscillators"," in IEEE Journal of Solid-State Circuits, vol. 33, no. 6, pp. 928-928, June 1998 [https://sci-hub.se/10.1109/4.678662]

Ali Hajimiri. Phase Noise in Oscillators [http://www-smirc.stanford.edu/papers/Orals98s-ali.pdf]

L. Lu, Z. Tang, P. Andreani, A. Mazzanti and A. Hajimiri, "Comments on “Comments on “A General Theory of Phase Noise in Electrical Oscillators””," in IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2170-2170, Sept. 2008 [https://sci-hub.se/10.1109/JSSC.2008.2005028]

image-20250629104527666

image-20250629081831223

Given \(i(t) = I_m \cos[(m\omega_0 - \Delta \omega)t]\) and \(m \ge 1\)

\[\begin{align} \phi(t) &= \frac{1}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t I_m\cos((m\omega_0 -\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t I_m\cos((m\omega_0 -\Delta \omega)\tau)\cos(n\omega_0\tau)d\tau\right] \\ &= \frac{I_m}{q_\text{max}}\left[\frac{C_0}{2}\int_{-\infty}^t \cos((m\omega_0 -\Delta \omega)\tau)d\tau + \sum_{n=1}^\infty C_n\int_{-\infty}^t \frac{\cos((m\omega_0 - \Delta \omega+ n\omega_0)\tau)+ \cos((m\omega_0-\Delta \omega - n\omega_0)\tau)}{2}d\tau\right] \end{align}\]

If \(m\ge 1\) and \(m=n\) \[ \phi(t) \approx \frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t) \] That is

\(m = 0\) \(m\gt 0\) & \(m\omega_0+\Delta \omega\) \(m\gt 0\) & \(m\omega_0-\Delta \omega\)
\(\phi(t)\) \(\frac{I_0C_0}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t)\) \(\frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t)\) \(\frac{I_mC_m}{2q_\text{max}\Delta \omega}\sin(\Delta\omega t)\)
\(P_{SBC}(\Delta \omega)\) \(10\log(\frac{I_0^2C_0^2}{16q_\text{max}^2\Delta \omega^2})\) \(10\log(\frac{I_m^2C_m^2}{16q_\text{max}^2\Delta \omega^2})\) \(10\log(\frac{I_m^2C_m^2}{16q_\text{max}^2\Delta \omega^2})\)

\[\begin{align} \mathcal{L}\{\Delta \omega\} &= 10\log\left(\frac{I_0^2C_0^2}{16q_\text{max}^2\Delta \omega^2} + 2\frac{I_m^2C_m^2}{16q_\text{max}^2\Delta \omega^2}\right) \\ &= 10\log\left(\frac{\overline{i_n^2/\Delta f}\cdot \frac{C_0^2}{2} }{4q_\text{max}^2\Delta \omega^2} + \frac{\overline{i_n^2/\Delta f}\cdot\sum_{m=1}^\infty C_m^2 }{4q_\text{max}^2\Delta \omega^2}\right) \\ &= 10\log \frac{\overline{i_n^2/\Delta f}(C_0^2/2+\sum_{m=1}^\infty C_m^2)}{4q_\text{max}^2\Delta \omega^2} \\ &= 10\log \frac{\overline{i_n^2/\Delta f}\cdot \Gamma_\text{rms}^2}{2q_\text{max}^2\Delta \omega^2} \end{align}\]

ISF & \(1/f\)-noise up-conversion

TODO 📅

image-20250626211817628

ISF Simulation

image-20241113232703941

PSS + PXF Method

Yizhe Hu, "A Simulation Technique of Impulse Sensitivity Function (ISF) Based on Periodic Transfer Function (PXF)" [https://bbs.eetop.cn/thread-869343-1-1.html]

TODO 📅

Transient Method

David Dolt. ECEN 620 Network Theory - Broadband Circuit Design: "VCO ISF Simulation" [https://people.engr.tamu.edu/spalermo/ecen620/ISF_SIM.pdf]

image-20241016211020230

image-20241016211101204

image-20241016211115630

To compare the ring oscillator and VCO the total injected charge to both should be the same

varactor simulation

Three methods:

  • PSS +PSP (pay attention to port termination and voltage amplitude)
  • PSS +PAC
  • PSS Only

image-20251026155903015

image-20251026160758494

image-20251026160408516


rms only scale magnitude \(1/\sqrt{2}\) but retain phase for complex number, like harmonic

  • mag(vh('pss "/P5")) = mag(rms(vh('pss "/P5"))) * (2**0.5)
  • phaseDegUnwrapped(vh('pss "/P5")) = phaseDegUnwrapped(rms(vh('pss "/P5")))

image-20251026155120102

reference

Jiří Lebl. Notes on Diffy Qs: Differential Equations for Engineers [link]

Matt Charnley. Differential Equations: An Introduction for Engineers [link]

Åström, K.J. & Murray, Richard. (2021). Feedback Systems: An Introduction for Scientists and Engineers Second Edition [https://www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-public_24Jul2020.pdf]

Strogatz, S.H. (2015). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2nd ed.). CRC Press [https://www.biodyn.ro/course/literatura/Nonlinear_Dynamics_and_Chaos_2018_Steven_H._Strogatz.pdf]

Cadence Blog, "Resonant Frequency vs. Natural Frequency in Oscillator Circuits" [link]


Aditya Varma Muppala. Oscillators [https://youtube.com/playlist?list=PL9Trid0A4Da2fOmYTEjhAnUkGPxyiH7H6&si=ILxn8hfkMYjXW5f4]

P.E. Allen - 2003. ECE 6440 - Frequency Synthesizers: Lecture 160 – Phase Noise - II [https://pallen.ece.gatech.edu/Academic/ECE_6440/Summer_2003/L160-PhNoII(2UP).pdf]

Y. Hu, T. Siriburanon and R. B. Staszewski, "Intuitive Understanding of Flicker Noise Reduction via Narrowing of Conduction Angle in Voltage-Biased Oscillators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 12, pp. 1962-1966, Dec. 2019 [https://sci-hub.se/10.1109/TCSII.2019.2896483]

S. Levantino, P. Maffezzoni, F. Pepe, A. Bonfanti, C. Samori and A. L. Lacaita, "Efficient Calculation of the Impulse Sensitivity Function in Oscillators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 628-632, Oct. 2012 [https://sci-hub.se/10.1109/TCSII.2012.2208679]

S. Levantino and P. Maffezzoni, "Computing the Perturbation Projection Vector of Oscillators via Frequency Domain Analysis," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 10, pp. 1499-1507, Oct. 2012 [https://sci-hub.se/10.1109/TCAD.2012.2194493]

Thomas H. Lee. Linearity, Time-Variation, Phase Modulation and Oscillator Phase Noise [https://class.ece.iastate.edu/djchen/ee507/PhaseNoiseTutorialLee.pdf]

Y. Hu, T. Siriburanon and R. B. Staszewski, "Oscillator Flicker Phase Noise: A Tutorial," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 2, pp. 538-544, Feb. 2021 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9286468]

Jaeha Kim. Lecture 8. Special Topics: Design Trade -Offs in LC -Tuned Oscillators [https://ocw.snu.ac.kr/sites/default/files/NOTE/7033.pdf]

A. Demir, A. Mehrotra and J. Roychowdhury, "Phase noise in oscillators: a unifying theory and numerical methods for characterization," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 5, pp. 655-674, May 2000 [https://sci-hub.se/10.1109/81.847872]


A. A. Abidi and D. Murphy, "How to Design a Differential CMOS LC Oscillator," in IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 45-59, 2025 [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10818782]

Akihide Sai, Toshiba. ISSCC 2023 T5: All-digital PLLs From Fundamental Concepts to Future Trends [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T5.pdf]


Pietro Andreani. ISSCC 2011 T1: Integrated LC oscillators [slides,transcript]

—. ISSCC 2017 F2: Integrated Harmonic Oscillators

—. SSCS Distinguished Lecture: RF Harmonic Oscillators Integrated in Silicon Technologies [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-Toronto.pdf]

—. ESSCIRC 2019 Tutorials: RF Harmonic Oscillators Integrated in Silicon Technologies [https://youtu.be/k1I9nP9eEHE?si=fns9mf3aHjMJobPH]

—. "Harmonic Oscillators in CMOS—A Tutorial Overview," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 2-17, 2021 [pdf]

C. Samori, "Tutorial: Understanding Phase Noise in LC VCOs," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2016

—, "Understanding Phase Noise in LC VCOs: A Key Problem in RF Integrated Circuits," in IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 81-91, Fall 2016 [https://sci-hub.se/10.1109/MSSC.2016.2573979]

—, Phase Noise in LC Oscillators: From Basic Concepts to Advanced Topologies [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-VCO-short.pdf]

Jun Yin. ISSCC 2025 T10: mm-Wave Oscillator Design

reference

"Topics in IC (Wireline Transceiver Design): Lec 4 - Injection Locked Oscillators" [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%204%20-%20Injection%20Locked%20Oscillators.pdf]

Cowan, Glenn. (2024). Mixed-Signal CMOS for Wireline Communication: Transistor-Level and System-Level Design Considerations

Mozhgan Mansuri. ISSCC2021 SC3: Clocking, Clock Distribution, and Clock Management in Wireline/Wireless Subsystems [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/SHORT%20COURSE/ISSCC2021-SC3.pdf]

Aditya Varma Muppala. Oscillator Theory - Injection Locking [note, video1, video2]

Min-Seong Choo. Review of Injection-Locked Oscillators [https://journal.theise.org/jse/wp-content/uploads/sites/2/2020/09/JSE-2020-0001.pdf]

maximum frequency

A conventional inverter-based ring oscillator consists of a single loop of an odd number of inverters. While compact, easy to design and tunable over a wide frequency range, this oscillator suffers from several limitations.

  • it is not possible to increase the number of phases while maintaining the same oscillation frequency since the frequency is inversely proportional to the number of inverters in the loop. In other words, the time resolution of the oscillator is limited to one inverter delay and cannot be improved below this limit.
  • the number of phases that can be obtained from this oscillator is limited to odd values. Otherwise, if an even number of inverters is used, the circuit remains in a latched state and does not oscillate.

To overcome the limitations of conventional ring oscillators, multi-paths ring oscillator (MPRO) is proposed. Each phase can be driven by two or more inverters, or multi-paths instead of having each phase in oscillator driven by a single inverter, or single path.

One thing that makes the MPRO design problem even more complicated is its property of having multiple possible oscillation modes. Without a clear understanding of what makes one of these modes dominant, it is very likely that a designer might end-up having an oscillator that can start-up each time in a different oscillation mode depending on the initial state of the oscillator.

image-20220320155440541

In practive, the oscillator starts first from a linear mode of operation where all the buffers are indeed acting as linear transconductors. All oscillation modes that have mode gains, \(a_n\), lower than the actual dc gain of the inverter, \(a_0\), start to grow. As the oscillation amplitude grows, the effective gain of the inverter drops due to nonlinearity. Consequently, modes with higher mode gain die out and only the mode that requires the minimum gain continues to oscillate and hence is the dominant mode.

The dominant mode is dependent only on the relative sizing vector

maximum oscillation frequency

The oscillation frequency of the dominant mode of any MPRO having any arbitrary coupling structure and number of phases is \[ f_{n^*} = \frac {1}{2\pi}\frac {(a_0-1) \cdot \sum_{i=1}^{N}x_isin\left ( \frac {2\pi n^*(i-1)}{N} \right)}{(a_0\tau _p - \tau _o)\cdot \sum_{i=1}^{N}-x_icos\left( \frac{2\pi n^*(i-1)}{N}+(\tau _o - \tau _p) \right)} \] image-20220320172952925

A linear increase in the maximum possible normalized oscillation frequency as the number of stages increases provided that the dc gain of the buffer sufficient to provide the required amplification

image-20220320170324494

image-20220320170523390

assuming unlimited dc gain and zero mode gain margins

mode stability

A common problem in MPRO design is the stability of the dominant oscillation mode. Mode stability refers to whether the MPRO always oscillates at the same mode regardless of the initial conditions of the oscillator. This problem is especially pronounced for MPROs with a large number of phases. This is due to the existence of many modes and the very small differences in the value of the mode gain of adjacent modes if the MPRO is not well designed.

In general, when the mode gain difference between two modes is small, the oscillator can operate in either one depending on initial conditions.

coupling configurations and simulation results

image-20220320165217231

Abou-El-Sonoun, A. A. (2012). High Frequency Multiphase Clock Generation Using Multipath Oscillators and Applications. UCLA. ProQuest ID: AbouElSonoun_ucla_0031D_10684. Merritt ID: ark:/13030/m57p9288. Retrieved from https://escholarship.org/uc/item/75g8j8jt

frequency stability

A problem associated with the design of MPROs is the existence of different possible modes of oscillation. Each of these modes is characterized by a different frequency, phase shift and phase noise.

Linear delay-stage model (mode gain)

mode gain is based on the linear model, independent of process but depends on coupling structure (coupling configuration, size ratio).

The inverting buffer modeled as a linear transconductor. The input-output relationship of a single buffer scaled by \(h_i\) and driving the input capacitance of a similar buffer can be expressed as \[\begin{align} h_ig_mv_{in}(t) + h_ig_oV_{out}(t)+h_iC_g\frac {dV_{out}(t)}{dt} &= 0 \\ a_nV_{in}(t)+V_{out}(t)+\tau \frac {V_{out}(t)}{dt} &= 0 \end{align}\] where \(g_m\) is the transconductance, \(g_o\) is the output conductance, \(C_g\) is the buffer input capacitance which also acts as the load capacitance for the driving buffer, and \(a_n = \frac {g_m}{g_o}\) is the linear dc gain of the buffer, and \(\tau=\frac {C_g}{g_o}\) is a time constant.

Similarly, \(V_1\), the output of the first stage in MPRO can be expressed \[ \sum_{i=1}^{N}h_ig_mV_i(t)+\sum_{i=1}^{N}h_ig_oV_i(t)+\sum_{i=1}^{N}h_iC_g\frac {dV_it(t)}{dt} = 0 \] Defining the fractional sizing factors and the total sizing factor as \(x_i=\frac{h_i}{H}\) and \(H=\sum_{i=1}^{N}h_i\) \[ a_n\sum_{i=1}^{N}x_iV_i(t) + V_1(t)+\tau\frac {dV_i(t)}{dt} = 0 \] where \(a_n = \frac {g_m}{g_o}\) and \(\tau=\frac {C_g}{g_o}\) are same dc gain and time constant defined previously

Since the total phase shift around the loop should be multiples of \(2\pi\), the oscillation waveform at the ith node can be expressed as \[ V_i(t) = V_o \cos(\omega_nt-\Delta \varphi \cdot i) \] where \(\omega_n\) is the oscillation frequency and \(\Delta \varphi = \frac {2\pi n}{N}\), \(N\) is the number of stages in the oscillator and \(n\) can take values between \(0\) and \(N-1\)

Plug \(V_i(t)\) into differential equation, we get \[ a_n\sum_{i=1}^{N}x_i\cos(\omega_n t-\frac{2\pi n}{N}i)+\cos(\omega_n t-\frac{2\pi n}{N}) - \omega_n \tau \sin(\omega_n t-\frac{2\pi n}{N}) = 0 \] By equating the \(cos(\omega_n t)\) and \(sin(\omega_n t)\) terms of the above equation, we get expressions for the oscillation frequency of the nth mode and the minimum dc gain required for this mode to exist. we refer to this gain as the mode gain \[\begin{align} \omega_n\tau &= \frac {\sum_{i=1}^{N}x_i \cdot \sin(\frac{2\pi n}{N}(i-1))}{-\sum_{i=1}^{N}x_i \cdot \cos(\frac{2\pi n}{N}(i-1))} \\ a_n &= \frac {1}{-\sum_{i=1}^{N}x_i \cdot \cos(\frac{2\pi n}{N}(i-1))} \end{align}\] where \(a_n\) should be greater than \(0\) for a existent mode

In practice, the oscillator starts first from a linear mode of operation where all the buffers are indeed acting as linear transconductors. All oscillation modes that have mode gains \(a_n\) lower than the actual dc gain of the inverter \(a_o\) start to grow. As the oscillation amplitude grows, the effective gain of the inverter drops due to nonlinearity. Consequently, modes with higher mode gain die out and only the mode that requires the minimum gain continues to oscillate and hence is the dominant mode

A. A. Hafez and C. K. Yang, "Design and Optimization of Multipath Ring Oscillators," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2332-2345, Oct. 2011, doi: 10.1109/TCSI.2011.2142810.

Simulation-based approach

GCHECK is an automated verification tool that validate whether a ring oscillator always converges to the desired mode of operation regardless of the initial conditions and variability conditions. This is the first tool ever reported to address the global convergence failures in presence of variability. It has been shown that the tool can successfully validate a number of coupled ring oscillator circuits with various global convergence failure modes (e.g. no oscillation, false oscillation, and even chaotic oscillation) with reasonable computational costs such as running 1000-point Monte-Carlo simulations for 7~60 initial conditions (maximum 4 hours).

  • The verification is performed using a predictive global optimization algorithm that looks for a problematic initial state from a discretized state space
  • despite the finite number of initial state candidates considered and finite number of Monte-Carlo samples to model variability, the proposed algorithm can verify the oscillator to a prescribed confidence level

image-20220320183344877

  • The observation that the responses of a circuit with nearby initial conditions are strongly correlated with respect to common variability conditions enables us to explore a discretized version of the initial condition space instead of the continuous one.
  • the settling time increases as the initial state gets farther away from the equilibrium state allowed us to use the settling time as a guidance metric to find a problematic initial condition.

Selecting the Next Initial Condition Candidate to Evaluate

To determine whether the algorithm should continue or terminate the search for a new maximum, the algorithm estimates the probability of finding a new initial condition with the longer settling time, based on the information obtained with the previously-evaluated initial conditions.

GCHECK EXAMPLE

1
python gcheck_osc.py input.scs

output log:

1
2
3
4
5
6
7
8
Step 1/4: Simulating the setting-time distribution with the reference initial condition
...
Step 2/4: Simulating the setting-time distribution for randomly-selected initial probes
...
Step 3/4: Searching for Problematic Initial Conditions
...
Step 4/4: Reporting Verification Results and Statistics
...

image-20220320201718018

T. Kim, D. -G. Song, S. Youn, J. Park, H. Park and J. Kim, "Verifying start-up failures in coupled ring oscillators in presence of variability using predictive global optimization," 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2013, pp. 486-493 GCHECK: Global Convergence Checker for Oscillators](https://mics.snu.ac.kr/wiki/GCHECK)

0%