image-20241019142915175


alternative view of sampling, assuming DC value is \(A\)

sampling-c2d-d2d.drawio

  • \(x_c(t)\) and \(x_s(t)\)

    \(\overline{x_c} = A\); \(\overline{x_s}=\frac{A}{T}\): therefore \(X_s(j0) = \frac{1}{T}X_c(j0)\)

  • \(x[n]\) and \(x_d[n]\)

    \(\overline{x} = A\); \(\overline{x_d}=\frac{A}{2}\): therefore \(X_d(e^{j0}) = \frac{1}{2}X(e^{j0})\)

expander

sampling-expander.drawio

  • \(x[n]\) and \(x_e[n]\)

    \(\overline{x} = A\); \(\overline{x_e}=A\): therefore \(X_e(e^{j0}) = X(e^{j0})\)

    Fourier transform of the output of the expander is a frequency-scaled version of the Fourier transform of the input


Subsampling or Downsampling

image-20241004151215993

image-20241004151308422

image-20241004151434477

  • Eqs. (4.72)

    the superposition of an infinite set of amplitude-scaled copies of \(X_c(j\Omega)\), frequency scaled through \(\omega = \Omega T_d\) and shifted by integer multiples of \(2\pi\)

  • Eq. (4.77)

    the superposition of \(M\) amplitude-scaled copies of the periodic Fourier transform \(X (e^{j\omega})\), frequency scaled by \(M\) and shifted by integer multiples of \(2\pi\)


downsampled by a factor of \(M = 2\)

image-20241004161805974


image-20241005073349726

image-20241005073534041

Upsampling or Zero Insertion

image-20241006072426572

image-20241006074425704

image-20241006075854246


image-20241006074604512

sampling identities

sampling-ID.drawio


downsampling identity

image-20241007085509889

image-20241007090624888


upsampling identity

image-20241007085527233

image-20241007090939701

Polyphase Decomposition

image-20241020122709610

image-20241020122726153

where \(e_k[n]=h[nM+k]\)


Polyphase Implementation of Decimation Filters & Interpolation Filters

Decimation system Interpolation system
image-20241020123035001 image-20241020123043829
image-20241020123027067 image-20241020123101780
sampling identity image-20241020123345371 image-20241020123355113

LPTV Implementation

TODO ๐Ÿ“…

The interpolation filter following an up-sampler generally is time varying and cannot be represented by a simple transfer function. The equivalent filter in a zero-order hold is an exception, perhaps unique, that can be represented with a time-invariant transfer function

Dr. Deepa Kundur, Multirate Digital Signal Processing: Part I [pdf, https://www.comm.utoronto.ca/dkundur/course/discrete-time-systems/]

ZOH interpolator

The interpolation filter following an up-sampler generally is time varying and cannot be represented by a simple transfer function. The equivalent filter in a Zero-Order Hold is an exception, perhaps unique, that can be represented with a time-invariant transfer function


zoh.drawio \[ F_1(z) = X(z^{LM})\frac{1-z^{-LM}}{1-z^{-1}} \]

Split the \(1:LM\) hold process into a \(1 : L\) hold followed by a \(1 : M\) hold \[ Y(\eta)=X(\eta^{L})\frac{1-\eta^{-L}}{1-\eta^{-1}} \] then \[\begin{align} F_2(z) &= Y(z^M)\cdot\frac{1-z^{-M}}{1-z^{-1}} \\ &=X(z^{LM})\frac{1-z^{-LM}}{1-z^{-M}}\cdot \frac{1-z^{-M}}{1-z^{-1}} \\ &= X(z^{LM})\frac{1-z^{-LM}}{1-z^{-1}} \end{align}\]

That is \(F_1(z)=F_2(z)\), i.e. they are equivalent


image-20241103180315919

Random Signals & Multirate Systems

Balu Santhanam, Probability Theory & Stochastic Process 2020: Random Signals & Multirate Systems [https://ece-research.unm.edu/bsanthan/ece541/rand.pdf]

Decimation by Summing

proportional path

The loop gain of a proportional path is unchanged

phug_loop.drawio

In (a), the loop gain is \(\frac{\phi_o(z)}{\phi_e(z)}\), which is \[ LG_a(z)=\frac{\phi_o(z)}{\phi_e(z)} = \frac{1}{1-z^{-1}} \]

In (b), Accumulate-and-dump (AAD) is \(\frac{1-z^{-L}}{1-z^{-1}}\), then \(\phi_m(\eta)\) can be expressed as \[ \phi_m(\eta) = \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L} \] Hence \[\begin{align} \phi_o(\eta) &= \phi_m(\eta) \frac{1}{1-\eta^{-1}} \\ &= \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L}\cdot \frac{1}{1-\eta^{-1}} \end{align}\]

After zero-order hold process, we obtain \(\phi_f(z)\), which is \[\begin{align} \phi_f(z) &= \phi_o(z^L) \cdot \frac{1-z^{-L}}{1-z^{-1}} \\ &=\frac{1-z^{-L}}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1}{1-z^{-L}}\cdot \frac{1-z^{-L}}{1-z^{-1}} \end{align}\] i.e., \[ LG_b(z) = \frac{1}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1-z^{-L}}{1-z^{-1}} \]

When bandwidth is much less than sampling rate (data rate), \(\frac{1}{L}\cdot \frac{1-z^{-L}}{1-z^{-1}} \approx 1\)

Therefore \[ LG_b(z) \approx \frac{1}{1-z^{-1}} \]

In the end \[ LG_a(z) \approx LG_b(z) \]


Assume PD output is constant

phug_seq.drawio

integral path

integral path gain reduced by \(L\)

frug_loop.drawio

In (a), \(\phi_o(z)=\frac{1}{(1-z^{-1})^2}\), i.e. \[ LG_a(z) = \frac{1}{(1-z^{-1})^2} \]

In (b), after Accumulate-and-dump (AAD), \(\phi_(\eta)\) is \[ \phi_m(\eta) = \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L} \]

After frequency integrator and phase integrator \[\begin{align} \phi_o(\eta) &= \phi_m(\eta) \cdot \frac{1}{(1-\eta^{-1})^2} \\ &= \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L} \cdot \frac{1}{(1-\eta^{-1})^2} \end{align}\] Then \(\phi_f(z)\) is shown as below \[\begin{align} \phi_f(z) &= \phi_o(z^L)\cdot \frac{1-z^{-L}}{1-z^{-1}} \\ &= \frac{1-z^{-L}}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1}{(1-z^{-L})^2}\cdot \frac{1-z^{-L}}{1-z^{-1}} \\ &= \frac{1}{L} \cdot \frac{1}{(1-z^{-1})^2} \end{align}\]

That is, \[ LG_b(z) = \frac{1}{L} \cdot \frac{1}{(1-z^{-1})^2} = \frac{1}{L}\cdot LG_a(z) \]


Assume PD output is constant

frug_seq.drawio

\[ \lim_{n\to +\infty} \frac{\Delta P_1}{\Delta P_0} = \lim_{n\to +\infty}\frac{n+2L}{nL+\alpha L+\beta L^2} = \frac{1}{L} \]

Decimation by Voting

image-20241126211307012


In above screenshot

  1. \(K_D\) is just relative value
  2. frug shall not be scaled by decimator factor

proved as below

DC gain \(K_B\) of summing (boxcar filter) is decimation factor \(M\) , voting gain \(K_V\) is about \(0.54K_b=0.54M\)

  1. downsampling \(\frac{1}{M}\) and ZOH \(\frac{1-z^{-M}}{1-z^{-1}}\) can be can be cancelled out at low frequency
  2. decimation gain: accumulator \(\frac{1-z^{-M}}{1-z^{-1}}\) replaced with linearizing gain \(K_B\) and majority voting replaced with \(K_V\)

proportional path: \[\begin{align} LG_{ph} &= K_{BB}\cdot \frac{1-z^{-M}}{1-z^{-1}}\cdot \frac{1}{M}\cdot \frac{1}{1-z^{-M}}\cdot \frac{1-z^{-M}}{1-z^{-1}} \\ &\approx K_{BB}\cdot \frac{1-z^{-M}}{1-z^{-1}}\cdot \frac{1}{1-z^{-M}} \\ &= K_{BB}\cdot K_D\cdot \frac{1}{1-z^{-M}} \end{align}\]

integral path: \[\begin{align} LG_{fr} &= K_{BB}\cdot \frac{1-z^{-M}}{1-z^{-1}}\cdot \frac{1}{M}\cdot \frac{1}{(1-z^{-M})^2}\cdot \frac{1-z^{-M}}{1-z^{-1}} \\ &\approx K_{BB}\cdot \frac{1-z^{-M}}{1-z^{-1}}\cdot \frac{1}{(1-z^{-M})^2} \\ &= K_{BB}\cdot K_D\cdot \frac{1}{(1-z^{-M})^2} \end{align}\]

J. Stonick. ISSCC 2011 "DPLL-Based Clock and Data Recovery" [slides,transcript]

J. L. Sonntag and J. Stonick, "A Digital Clock and Data Recovery Architecture for Multi-Gigabit/s Binary Links," in IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1867-1875, Aug. 2006 [https://sci-hub.se/10.1109/JSSC.2006.875292]

J. Sonntag and J. Stonick, "A digital clock and data recovery architecture for multi-gigabit/s binary links," Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005.. [https://sci-hub.se/10.1109/CICC.2005.1568725]

Y. Xia et al., "A 10-GHz Low-Power Serial Digital Majority Voter Based on Moving Accumulative Sign Filter in a PS-/PI-Based CDR," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 12 [https://sci-hub.se/10.1109/TMTT.2020.3029188]

J. Liang, A. Sheikholeslami, "On-Chip Jitter Measurement and Mitigation Techniques for Clock and Data Recovery Circuits" [https://tspace.library.utoronto.ca/bitstream/1807/91138/3/Liang_Joshua_201706_PhD_thesis.pdf]

J. Liang, A. Sheikholeslami. ISSCC2017. "A 28Gbps Digital CDR with Adaptive Loop Gain for Optimum Jitter Tolerance" [slides,paper]

J. Liang, A. Sheikholeslami,, "Loop Gain Adaptation for Optimum Jitter Tolerance in Digital CDRs," in IEEE Journal of Solid-State Circuits [https://sci-hub.se/10.1109/JSSC.2018.2839038]

M. M. Khanghah, K. D. Sadeghipour, D. Kelly, C. Antony, P. Ossieur and P. D. Townsend, "A 7-Bit 7-GHz Multiphase Interpolator-Based DPC for CDR Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers [https://cora.ucc.ie/bitstreams/7ae5bfaa-8dd9-45a7-8276-99676b7b6078/download]

[CDR CIRCUIT-BLOCKS: DESIGN AND VERIFICATION USING VERILOG - 2.6. DECIMATOR]

Michael H. Perrott, Tutorial on Digital Phase-Locked Loops, CICC 2009, San Jose, CA, Sept. 13, 2009 [https://www.cppsim.com/PLL_Lectures/digital_pll_cicc_tutorial_perrott.pdf]

Liu, Tao, Tiejun Li, Fangxu Lv, Bin Liang, Xuqiang Zheng, Heming Wang, Miaomiao Wu, Dechao Lu, and Feng Zhao. 2021. "Analysis and Modeling of Mueller-Muller Clock and Data Recovery Circuits" Electronics 10 [https://www.mdpi.com/2079-9292/10/16/1888/pdf?version=1628492599]

Gu, Youzhi & Feng, Xinjie & Chi, Runze & Chen, Yongzhen & Wu, Jiangfeng. (2022). Analysis of Mueller-Muller Clock and Data Recovery Circuits with a Linearized Model. 10.21203/rs.3.rs-1817774/v1. [https://assets-eu.researchsquare.com/files/rs-1817774/v1_covered.pdf?c=1664188179]

Chen, Junkun, Youzhi Gu, Xinjie Feng, Runze Chi, Jiangfeng Wu, and Yongzhen Chen. 2024. "Analysis of Muellerโ€“Muller Clock and Data Recovery Circuits with a Linearized Model" Electronics [https://mdpi-res.com/electronics/electronics-13-04218/article_deploy/electronics-13-04218-v2.pdf?version=1730106095]

K. Yadav, P. -H. Hsieh and A. C. Carusone, "Loop Dynamics Analysis of PAM-4 Muellerโ€“Muller Clock and Data Recovery System," in IEEE Open Journal of Circuits and Systems [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9910561]

TODO ๐Ÿ“…

Tristate: \(\alpha=1\)

XOR: \(\alpha=1\)

\(\frac{1}{T}\) in Divider

image-20240928004526381

image-20240928004308700

Michael H. Perrott, PLL Design Using the PLL Design Assistant Program. [https://designers-guide.org/forum/Attachments/pll_manual.pdf]


\(\frac{1}{T}\) & \(T\) come from CT-DT & DT-CT

image-20240928203714450

H. Kang et al., "A 42.7Gb/s Optical Receiver With Digital Clock and Data Recovery in 28nm CMOS," in IEEE Access, vol. 12, pp. 109900-109911, 2024 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10630516]

Sonntag JSSC 2006

image-20241129222258061

image-20241129223706720

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
clear;
close all;
clc;


Tb = 200e-12;
Ts = Tb*8; % the decimation factor was 8
z = tf('z', Ts);

Kdpc = 1/2^9;
Kv = 8*0.54;
Kpd = 10.6;
phug = 2^-3;
frug = 2^-12;
Nel = 18;

options = bodeoptions;
options.FreqUnits = 'MHz';
options.XLim = [1e-2, 1e1];
options.YLim = [-10, 5];

L = Kpd*Kv*Kdpc/(1-z^-1)*(phug + frug/(1-z^-1))*z^-Nel;
TF = L/(1+L);
bodemag(TF,options);

hold on;
frug = 2^-11;
L = Kpd*Kv*Kdpc/(1-z^-1)*(phug + frug/(1-z^-1))*z^-Nel;
TF = L/(1+L);
bodemag(TF,options);

hold on;
frug = 2^-10;
L = Kpd*Kv*Kdpc/(1-z^-1)*(phug + frug/(1-z^-1))*z^-Nel;
TF = L/(1+L);
bodemag(TF,options);

legend('frug=2^{-12}','frug=2^{-11}', 'frug=2^{-10}', 'FontSize',10)
grid on;
title('phase transfer function', 'FontSize', 12)
xlabel('frequency', 'FontSize',10)
ylabel('frequency response', 'FontSize',10)

Full View

image-20241129223734870

Kpd, Kb, Kv

Both decimation factor and factor for voting are 4

image-20241130162850467

  • Kpd formula: 12.467; Kpd_bb_0 12.465
  • Kpd_Kb: 49.860; Kpd_Kv 27.265
  • Kb: 4.00; Kv 2.19

That is

  1. gain of BoxCar is the decimation factor
  2. Voting across 4 inputs had a 54% reduced gain relative to boxcar filter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
from scipy.stats import norm
import itertools
from collections import defaultdict
import matplotlib.pyplot as plt

sigmai = 0.032 #UI, input jitter
Ptrans = 0.5 # Transition density
deci_factor = 4

phase_error = np.linspace(-0.1, 0.1, 201) #UI, phase offset
pd_late = norm.cdf(phase_error/sigmai)
pd_early = 1.0 - pd_late
pd_avg = pd_late*1.0 - 1.0*pd_early

Kpd_bb = (pd_avg[1:] - pd_avg[:-1])/(phase_error[1:] - phase_error[:-1])*Ptrans
Kpd_bb_0 = np.max(Kpd_bb)

## by formula
Kpd_calc = 1.0/(sigmai*np.sqrt(2*np.pi))

print(f'Kpd formula: {Kpd_calc:.3f}; Kpd_bb_0 {Kpd_bb_0:.3f}') # Kpd formula: 12.467; Kpd_bb_0 12.465

plt.figure()
plt.plot(phase_error, pd_avg, color='r', linewidth=3)
plt.title('!! PD average output vs timing offset(UI)')
plt.grid()
plt.show()


prob = np.zeros((phase_error.shape[0],3))
prob[:,0] = pd_early*Ptrans # -1
prob[:,1] = 1.0 - Ptrans # 0
prob[:,2] = pd_late*Ptrans # 1

pd_out = np.array([-1.0,0.0,1.0])
idxs = list([[0,1,2] for _ in range(deci_factor)])
boxcar_avg = []
voting_avg = []
for i in range(phase_error.shape[0]):
prob_i = prob[i,:]
boxcar_tmp = 0.0
voting_tmp = 0.0
for idxs_tmp in itertools.product(*idxs):
pd_list = pd_out[[idxs_tmp]]
prob_list = prob_i[[idxs_tmp]]
pd_sum = np.sum(pd_list)
pd_vote = 1.0 if pd_sum > 0.0 else -1.0 if pd_sum <0.0 else 0.0
prob_prod = np.prod(prob_list)
boxcar_tmp += pd_sum*prob_prod
voting_tmp += pd_vote*prob_prod
boxcar_avg.append(boxcar_tmp)
voting_avg.append(voting_tmp)

boxcar_avg = np.array(boxcar_avg)
voting_avg = np.array(voting_avg)

plt.figure()
plt.plot(phase_error,boxcar_avg, label='FIR BoxCar', color='r', linewidth=3)
plt.plot(phase_error,voting_avg, label='Voting', color='b', linewidth=3, linestyle='--')
plt.legend()
plt.title('!!PD+BoxCar / !!PD+Voting vs timing offset(UI)')
plt.grid()
plt.show()


Kpd_Kb = (boxcar_avg[1:] - boxcar_avg[:-1])/(phase_error[1:] - phase_error[:-1])
Kpd_Kv = (voting_avg[1:] - voting_avg[:-1])/(phase_error[1:] - phase_error[:-1])
Kpd_kb_0 = np.max(Kpd_Kb)
Kpd_kv_0 = np.max(Kpd_Kv)
print(f'Kpd_Kb: {Kpd_kb_0:.3f}; Kpd_Kv {Kpd_kv_0:.3f}') # Kpd_Kb: 49.860; Kpd_Kv 27.265

plt.figure()
plt.plot(phase_error[:-1], Kpd_Kb, color='r', linewidth=3)
plt.plot(phase_error[:-1], Kpd_Kv, color='b', linewidth=3, linestyle='--')
plt.legend(['Kpd_Kb', 'Kpd_Kv'])
plt.title('Kpd*Kb / Kpd*Kv vs timing offset(UI)')
plt.grid()
plt.show()

Kb = Kpd_kb_0 / Kpd_bb_0
Kv = Kpd_kv_0 / Kpd_bb_0
print(f'Kb: {Kb:.2f}; Kv {Kv:.2f}') # Kb: 4.00; Kv 2.19

reference

Alan V Oppenheim, Ronald W. Schafer. 2010. Discrete-Time Signal Processing, 3rd edition

R. E. Crochiere and L. R. Rabiner, "Multirate Digital Signal Processing", Prentice Hall, 1983.

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th edition, 2007.

D. Sundararajan. 2024. Digital Signal Processing: An Introduction 2nd Edition

F. M. Gardner, "Phaselock Techniques", 3rd Edition, Wiley Interscience, Hoboken, NJ, 2005 [https://picture.iczhiku.com/resource/eetop/WyIgwGtkDSWGSxnm.pdf]

Rhee, W. (2020). Phase-locked frequency generation and clocking : architectures and circuits for modern wireless and wireline systems. The Institution of Engineering and Technology

Integrator

TODO ๐Ÿ“…

[https://www.eecg.utoronto.ca/~johns/ece1371/slides/10_switched_capacitor.pdf]

[https://www.seas.ucla.edu/brweb/papers/Journals/BRWinter17SwCap.pdf]

[https://class.ece.iastate.edu/ee508/lectures/EE%20508%20Lect%2029%20Fall%202016.pdf]

Push-Pull

TODO ๐Ÿ“…

Rinaldo Castello, "LINEARIZATION TECHNIQUES FOR PUSH-PULL AMPLIFIERS" [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/AMPLIFIERS_Stanf_Tor_2016_Last.pdf]

MOS parasitic Rd&Rs, Cd&Cs

Decrease the parasitic R&C

priority: \(R_s \gt R_d\), \(C_s \gt C_d\)

XCP as Negative Impedance Converter (NIC)

The Cross-Coupled Pair (XCP) can operate as an impedance negator [a.k.a. a negative impedance converter (NIC)]

A common application is to create a negative capacitance that can cancel the positive capacitance seen at a port, thereby improving the speed

image-20240922174319496 \[ I_{NIC} =\frac{V_{im} - V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} = \frac{-2V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} \] Therefore \[ Z_{NIC} = \frac{V_{ip} - V_{im}}{I_{NIC}}=\frac{2V_{ip}}{I_{NIC}} =- \frac{2}{g_m}-\frac{1}{sC_c} \] half-circuit

If \(C_{gd}\) is considered, and apply miller effect. half equivalent circuit is shown as below

nic.drawio

B. Razavi, "The Cross-Coupled Pair - Part III [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Issue. 1, pp. 10-13, Winter 2015. [https://www.seas.ucla.edu/brweb/papers/Journals/BR_Magzine3.pdf]

S. Galal and B. Razavi, "10-Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18um CMOS Technology,โ€ IEEE Journal of Solid-State Circuits, vol. 38, pp. 2138-2146, Dec. 2003. [https://www.seas.ucla.edu/brweb/papers/Journals/G&RDec03_2.pdf]

Flipped Voltage Follower (FVF)

image-20240921110019881

image-20240921113630249

T&H buffer in ADC

image-20240923200147070

[https://www.linkedin.com/posts/chembiyan-t-0b34b910_flipped-voltage-follower-fvf-basics-activity-7118482840803020800-qwyX?utm_source=share&utm_medium=member_desktop]

Z. Guo et al., "A 112.5Gb/s ADC-DSP-Based PAM-4 Long-Reach Transceiver with >50dB Channel Loss in 5nm FinFET," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 116-118, doi: 10.1109/ISSCC42614.2022.9731650.

Super-source follower (SSF)

image-20240924213742877

image-20240924213845608

image-20240924213853954

A. Sheikholeslami, "Voltage Follower, Part III [Circuit Intuitions]," in IEEE Solid-State Circuits Magazine, vol. 15, no. 2, pp. 14-26, Spring 2023, doi: 10.1109/MSSC.2023.3269457

Paul R. Gray. 2009. Analysis and Design of Analog Integrated Circuits (5th. ed.). Wiley Publishing. [pdf]

Double differential Pair

\(V_\text{ip}\) and \(V_\text{im}\) are input, \(V_\text{rp}\) and \(V_\text{rm}\) are reference voltage \[ V_o = A_v(\overline{V_\text{ip} - V_\text{im}} - \overline{V_\text{rp} - V_\text{rm}}) \]

2diffpair.drawio

In differential comparison mode, the feedback loop ensure \(V_\text{ip} = V_\text{rp}\), \(V_\text{im} = V_\text{rm}\) in the end

assume input and reference common voltage are same

Pros of (b)

  • larger input range i.e., \(\gt \pm \sqrt{2}V_\text{ov}\) of (a), it works even one differential is off due to lower voltage
  • larger \(g_m\) (smaller input difference of pair)

Cons of (b)

  • sensitive to the difference of common voltage between \(V_\text{ip}\), \(V_\text{im}\) and \(V_\text{rp}\), \(V_\text{rm}\)

common-mode voltage difference

doublepair_cm.drawio

copy aforementioned formula here for convenience \[ V_o = A_v(\overline{V_\text{ip} - V_\text{im}} - \overline{V_\text{rp} - V_\text{rm}}) \]

at sample phase \(V_\text{ip}= V_\text{im}= V_\text{cmi}\) and \(V_\text{rp}= V_\text{rm}= V_\text{cmr}\)

  • \(I_\text{ip0}= I_\text{im0} = I_\text{i0}\)
  • \(I_\text{rp0}= I_\text{rm0} = I_\text{r0}\)

i.e. \(\overline{I_\text{ip} + I_\text{rm}} - \overline{I_\text{im} + I_\text{rp}} = 0\)

at compare start

  • \(V_\text{ip}= V_\text{im}= V_\text{cmi}\) and \(V_\text{rp}= V_\text{cmr}+\Delta\), \(V_\text{rp}= V_\text{cmr}-\Delta\)

  • \(I_\text{ip}\lt I_\text{ip0}\), \(I_\text{rp} \gt I_\text{rp0}\)

  • \(I_\text{im}\gt I_\text{im0}\), \(I_\text{rm} \lt I_\text{rm0}\)

i.e. \(\overline{I_\text{ip} + I_\text{rm}} - \overline{I_\text{im} + I_\text{rp}} \lt 0\), we need to increase \(V_\text{ip}\) and decrease \(V_\text{im}\).

at the compare finish

\[\begin{align} V_\text{ip}= V_\text{cmi} + \Delta \\ V_\text{im}= V_\text{cmi} - \Delta \end{align}\]

and \(I_\text{ip0}= I_\text{im0} = I_\text{i0}\), \(I_\text{rp0}= I_\text{rm0} = I_\text{r0}\)

i.e. \(\overline{I_\text{ip} + I_\text{rm}} - \overline{I_\text{im} + I_\text{rp}} = 0\)


If \(V_\text{cmr} - V_\text{cmi} = \sqrt{2}V_{OV} + \delta\), and \(\delta \gt 0\). one transistor carries the entire tail current

  • \(I_\text{ip} =0\) and \(I_\text{rp} = I_{SS}\), all the time

At the end, \(V_\text{im} = V_\text{cmi} - (\Delta - \delta)\), the error is \(\delta\)

In closing, \(V_\text{cmr} - V_\text{cmi} \lt \sqrt{2}V_{OV}\) for normal work

Furthermore, the difference between \(V_\text{cmr}\) and \(V_\text{cmi}\) should be minimized due to limited impedance of current source and input pair offset

In the end \[ V_\text{cmr} - V_\text{cmi} \lt \sqrt{2}V_{OV} - V_{OS} \]

Under the condition, every transistor of pairs are on in equilibrium

pair mismatch

diff_mismatch_connect.drawio

\[\begin{align} I_{SE} &= g_m(\sigma_{vth,0} + \sigma_{vth,1}) \\ I_{DE} &= g_m(\sigma_{vth,0} + \sigma_{vth,1}) \end{align}\]

The input equivalient offset voltage \[\begin{align} V_{os,SE} &= \frac{I_{SE}}{2g_m} = \frac{\sigma_{vth,0} + \sigma_{vth,1}}{2} \\ V_{os,DE} &= \frac{I_{DE}}{g_m} = \sigma_{vth,0} + \sigma_{vth,1} \end{align}\]

Then \[\begin{align} \sigma_{vos,SE} &= \sqrt{\frac{2\sigma_{vth}^2}{4}} = \frac{\sigma_{vth}}{\sqrt{2}} \\ \sigma_{vos,DE} &= \sqrt{2\sigma_{vth}^2} = \sqrt{2}\sigma_{vth} \end{align}\]

We obtain \[ \sigma_{vos,DE} = 2\sigma_{vos,SE} \]

peaking without inductor

TODO ๐Ÿ“…

How to generate complex poles without inductor? [https://a2d2ic.wordpress.com/2020/02/19/basics-on-active-rc-low-pass-filters/]

Input Diff-Pair

DM Distortion

image-20241027095213326

CM Distortion

image-20241027095248946

Resistive Degeneration

Resistive degeneration in differential pairs serves as one major technique for linear amplifier

image-20240824132739726

The linear region for CMOS differential pair would be extended by \(ยฑI_{SS}R/2\) as all of \(I_{SS}/2\) flows through \(R\). \[\begin{align} V_{in}^+ -V_{in}^- &= V_{OV} + V_{TH}+\frac{I_{SS}}{2}R - V_{TH} \\ &= \sqrt{\frac{2I_{SS}}{\mu_nC_{OX}\frac{W}{L}}} + \frac{I_{SS}R}{2} \end{align}\]

Jri Lee, "Communication Integrated Circuits." https://cc.ee.ntu.edu.tw/~jrilee/publications/Comm_IC.pdf

Figure 14.12, Design of Analog CMOS Integrated Circuits, Second Edition [https://electrovolt.ir/wp-content/uploads/2014/08/Design-of-Analog-CMOS-Integrated-Circuit-2nd-Edition-ElectroVolt.ir_.pdf]

Biasing Tradeoffs in Resistive-Degenerated Diff Pair

image-20241027095520556

Todd Brooks, Broadcom "Input Programmable Gain Amplifier (PGA) Design for ADC Signal Conditioning" [https://classes.engr.oregonstate.edu/eecs/spring2021/ece627/Lecture%20Notes/OSU%20Classroom%20Presentaton%20042511.ppt]

Source-Degenerated Differential Pairs

TODO ๐Ÿ“…

reference

Elad Alon, ISSCC 2014, "T6: Analog Front-End Design for Gb/s Wireline Receivers" [https://picture.iczhiku.com/resource/eetop/wHKfZPYpAleAKXBV.pdf]

Byungsub Kim, ISSCC 2022, "T11: Basics of Equalization Techniques: Channels, Equalization, and Circuits"

Minsoo Choi et al., "An Approximate Closed-Form Channel Model for Diverse Interconnect Applications," IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 61, no. 10, pp. 3034-3043, Oct. 2014.

K. Yadav, P. -H. Hsieh and A. Chan Carusone, "Linearity Analysis of Source-Degenerated Differential Pairs for Wireline Applications," in IEEE Open Journal of Circuits and Systems, [link]

The average output of DSM tracks the input signal

\(\Delta\Sigma\) modulators are nonlinear systems since a quantizer is implemented in the \(\Delta\Sigma\)-loop


image-20241123140116340

No delay-free loops

image-20241128232040924

Both integrator and quantizer are delay free

NTF realizability criterion: No delay-free loops in the modulator

image-20241128233022231

linear settling & GBW of amplifier

TODO ๐Ÿ“…

Switched capacitor has been the common realization technique of discrete-time (DT) modulators, and in order to achieve a linear settling, the sampling frequency used in these converters needs to be significantly lower than the gain bandwidth product (GBW) of the amplifiers.

Delta Modulator

image-20240908173930949

\[\begin{align} (V_{in} - V_F) &= D_{out} \\ D_{out} &= s V_F \end{align}\]

Therefore \(V_{in} - \frac{D_{out}}{s} = D_{out}\) \[ D_{out} = \frac{s}{s+1} V_{in} \]

attenuates the low-frequency content of the signal, and amplifies high-frequency noise.

MOD1

image-20241005120659945

  • A binary DAC (and hence a binary modulator) is inherently linear
  • With a CT loop filter, MOD1 has inherent anti-alising

image-20241005202024498 \[\begin{align} v[1] &= u - (0) + e[1] \\ v[2] &= 2u - (v[1]) + e[2] \\ v[3] &= 3u - (v[1]+v[2]) + e[3] \\ v[4] &= 4u - (v[1]+v[2]+v[3]) + e[4] \end{align}\]

That is \[ v[n] = nu - \sum_{k=1}^{n-1}v[k] + e[n] \] Therefore, we have \(v[n-1] = (n-1)u - \sum_{k=1}^{n-2}v[k] + e[n-1]\), then \[\begin{align} v[n] &= nu - \sum_{k=1}^{n-1}v[k] + e[n] \\ &= u + \left((n-1)u - \sum_{k=1}^{n-2}v[k]\right) - v[n-1] + e[n] \\ &= u + v[n-1] - e[n-1] -v[n-1] + e[n] \\ &= u + e[n] - e[n-1] \end{align}\]

MOD2

image-20241005160203074

decimation filter

The combination of the the digital post-filter and downsampler is called the decimation filter or decimator

image-20241015220921002

\(\text{sinc}\) filter

image-20241015215159577

image-20241015215227042

image-20241015225859710

image-20241015215111430

\(\text{sinc}^2\) filter

image-20241015220030204

https://classes.engr.oregonstate.edu/eecs/spring2021/ece627/Lecture%20Notes/First-Order_D-S_ADC_Scan2.pdf

https://classes.engr.oregonstate.edu/eecs/spring2017/ece627/Lecture%20Notes/First-Order%20D-S%20ADC.pdf

Truncation DAC

image-20241022204239594


image-20241019220819728

An implementation of a high-resolution integral path using a digital delta-sigma modulator, low-resolution Nyquist DAC, and a lowpass filter

  • \(\Delta \Sigma\) truncates \(n\)-bit accumulator output to \(m\)-bits with \(m\le n\)
  • A \(m\)-bit Nyquist DAC outputs current, which is fed into a low pass filter that suppresses \(\Delta \Sigma\)'s quantization noise

image-20241022233749243

The remaining 11 bits are truncated to 3-levels using a second-order delta-sigma modulator (DSM), thus, obviating the need for a high resolution DAC

Hanumolu, Pavan Kumar. "Design techniques for clocking high performance signaling systems" [https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1v53k219r]

Mismatch Shaping

image-20241112220458335

Data-Weighted Averaging (DWA)

image-20241113000942025 \[\begin{align} \sum_{i=0}^{n}v[i] + e_\text{DAC}[n] &= y[n] \\ \sum_{i=0}^{n-1}v[i] + e_\text{DAC}[n-1] &= y[n-1] \end{align}\]

and we have \(w[n] = y[n] - y[n-1]\), then \[ w[n] = v[n] + e_\text{DAC}[n] - e_\text{DAC}[n-1] \] i.e. \[ W = V + (1-z^{-1})e_\text{DAC} \]

Element Rotation:

image-20241112233059745

[http://individual.utoronto.ca/schreier/lectures/12-2.pdf], [http://individual.utoronto.ca/trevorcaldwell/course/Mismatch.pdf]

reference

R. Schreier, ISSCC2006 tutorial: Understanding Delta-Sigma Data Converters

Shanthi Pavan, ISSCC2013 T5: Simulation Techniques in Data Converter Design [https://www.nishanchettri.com/isscc-slides/2013%20ISSCC/TUTORIALS/ISSCC2013Visuals-T5.pdf]

Bruce A. Wooley , 2012, "The Evolution of Oversampling Analog-to-Digital Converters" [https://r6.ieee.org/scv-sscs/wp-content/uploads/sites/80/2012/06/Oversampling-Wooley_SCV-ver2.pdf]

B. Razavi, "The Delta-Sigma Modulator [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Volume. 8, Issue. 20, pp. 10-15, Spring 2016. [http://www.seas.ucla.edu/brweb/papers/Journals/BRSpring16DeltaSigma.pdf]

Pavan, Shanthi, Richard Schreier, and Gabor Temes. (2016) 2016. Understanding Delta-Sigma Data Converters. 2nd ed. Wiley.


Richard E. Schreier, ECE 1371 Advanced Analog Circuits - 2015 [http://individual.utoronto.ca/schreier/ece1371-2015.html]

Gabor C. Temes. ECE 627-Oversampled Delta-Sigma Data Converters [https://classes.engr.oregonstate.edu/eecs/spring2017/ece627/lecturenotes.html]

Multipliers

TODO ๐Ÿ“…

Adders

TODO ๐Ÿ“…

overlapped tuning range

TODO ๐Ÿ“…

Mueller-Muller PD

Mueller-Muller type A timing function

image-20241019163636292

Mueller-Muller type B timing function

image-20241019163813449

Least-Mean-Square (LMS)

minimum mean square error (MMSE)

This simplified version of LMS algorithm is identical to the zero-forcing algorithm which minimizes the ISI at data samples

Sign-Sign LMS (SS-LMS)

T11: Basics of Equalization Techniques: Channels, Equalization, and Circuits, 2022 IEEE International Solid-State Circuits Conference

V. Stojanovic et al., "Autonomous dual-mode (PAM2/4) serial link transceiver with adaptive equalization and data recovery," in IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 1012-1026, April 2005, doi: 10.1109/JSSC.2004.842863.

Jinhyung Lee, Design of High-Speed Receiver for Video Interface with Adaptive Equalization; Phd thesis, August 2019. thesis link

Paulo S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 5th edition

E. -H. Chen et al., "Near-Optimal Equalizer and Timing Adaptation for I/O Links Using a BER-Based Metric," in IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2144-2156, Sept. 2008

DFE h0 Estimator

summer output \[ r_k = a_kh_0+\left(\sum_{n=-\infty,n\neq0}^{+\infty}a_{k-n}h_n-\sum_{n=1}^{\text{ntap}}\hat{a}_{k-n}\hat{h}_n\right) \] error slicer analog output \[ e_k=r_k-\hat{a}_k \hat{h}_0 \] error slicer digital output \[ \hat{e}_k=|e_k| \] It's NOT possible to implement \(e_k\), which need to determine \(\hat{a}_k=|r_k|\) in no time. One method to approach this problem is calculate \(e_k^{a_k=1}=r_k-\hat{a}_k \hat{h}_0\) and \(e_k^{a_k=-1}=r_k+\hat{a}_k \hat{h}_0\), then select the right one based on \(\hat{a}_k\)

The update equation based on Sign-Sign-Least Mean square (SS-LMS) and loss function \(L(\hat{h}_{\text{0~ntap}})=E(e_k^2)\) \[ \hat{h}_n(k+1) = \hat{h}_n(k)+\mu \cdot |e_k|\cdot \hat{a}_{k-n} \] Where \(n \in [0,...,\text{ntap}]\). This way, we can obtain \(\hat{h}_0\), \(\hat{h}_1\), \(\hat{h}_2\), ...

\(\hat{h}_0\) is used in AFE adaptation

We may encounter difficulty if the first tap of DFE is unrolled, its \(e_k\) is modified as follow \[ r_k = a_kh_0+\left(\sum_{n=-\infty,n\neq0}^{+\infty}a_{k-n}h_n-\sum_{n=2}^{\text{ntap}}\hat{a}_{k-n}\hat{h}_n\right) \] Where there is NO \(\hat{h}_1\)

To find \(\hat{h}_1\), we shall use different pattern for even and odd error slicer

Maximum Likelihood Sequence Estimator (MLSE)

image-20240807233152154

image-20240812205534753

image-20240812205613467

[IBIS-AMI Modeling and Correlation Methodology for ADC-Based SerDes Beyond 100 Gb/s https://static1.squarespace.com/static/5fb343ad64be791dab79a44f/t/63d807441bcd266de258b975/1675102025481/SLIDES_Track02_IBIS_AMI_Modeling_and_Correlation_Tyshchenko.pdf]

M. Emami Meybodi, H. Gomez, Y. -C. Lu, H. Shakiba and A. Sheikholeslami, "Design and Implementation of an On-Demand Maximum-Likelihood Sequence Estimation (MLSE)," in IEEE Open Journal of Circuits and Systems, vol. 3, pp. 97-108, 2022, doi: 10.1109/OJCAS.2022.3173686.

Zaman, Arshad Kamruz (2019). A Maximum Likelihood Sequence Equalizing Architecture Using Viterbi Algorithm for ADC-Based Serial Link. Undergraduate Research Scholars Program. Available electronically from [https://hdl.handle.net/1969.1/166485]

There are several variants of MLSD (Maximum Likelihood Sequence Detection), including:

  • Viterbi Algorithm
  • Decision Feedback Sequence Estimation (DFSE)
  • Soft-Output MLSD

[Evolution Of Equalization Techniques In High-Speed SerDes For Extended Reaches. https://semiengineering.com/evolution-of-equalization-techniques-in-high-speed-serdes-for-extended-reaches/]

image-20240824193839108

Mueller-Muller CDR

image-20240812222307061

MMPD infers the channel response from baud-rate samples of the received data, the adaptation aligns the sampling clock such that pre-cursor is equal to the post-cursor in the pulse response

image-20240807230029591

Faisal A. Musa. "HIGH-SPEED BAUD-RATE CLOCK RECOVERY" [https://www.eecg.utoronto.ca/~tcc/thesis-musa-final.pdf]

Faisal A. Musa."CLOCK RECOVERY IN HIGH-SPEED MULTILEVEL SERIAL LINKS" [https://www.eecg.utoronto.ca/~tcc/faisal_iscas03.pdf]

Eduardo Fuentetaja. "Analysis of the M&M Clock Recovery Algorithm" [https://edfuentetaja.github.io/sdr/m_m_analysis/]

Liu, Tao & Li, Tiejun & Lv, Fangxu & Liang, Bin & Zheng, Xuqiang & Wang, Heming & Wu, Miaomiao & Lu, Dechao & Zhao, Feng. (2021). Analysis and Modeling of Mueller-Muller Clock and Data Recovery Circuits. Electronics. 10. 1888. 10.3390/electronics10161888.

Gu, Youzhi & Feng, Xinjie & Chi, Runze & Chen, Yongzhen & Wu, Jiangfeng. (2022). Analysis of Mueller-Muller Clock and Data Recovery Circuits with a Linearized Model. 10.21203/rs.3.rs-1817774/v1.

Baud-Rate CDRs [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%206%20-%20Clock%20and%20Data%20Recovery.pdf]

F. Spagna et al., "A 78mW 11.8Gb/s serial link transceiver with adaptive RX equalization and baud-rate CDR in 32nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010, pp. 366-367, doi: 10.1109/ISSCC.2010.5433823.

K. Yadav, P. -H. Hsieh and A. C. Carusone, "Loop Dynamics Analysis of PAM-4 Muellerโ€“Muller Clock and Data Recovery System," in IEEE Open Journal of Circuits and Systems, vol. 3, pp. 216-227, 2022

Jaeduk Han, "Design and Automatic Generation of 60Gb/s Wireline Transceivers" [https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-143.pdf]

image-20240810095006113

image-20240808001201612

image-20240808001256515

image-20240808001449664

image-20240808001501485

SS-MM CDR

image-20240807232814202

\(h_1\) is necessary

  • without DFE

    SS-MMPD locks at the point (\(h_1=h_{-1}\)โ€‹)

  • With a 1-tap DFE

    1-tap adaptive DFE that forces the \(h_1\) to be zero, the SS-MMPD locks wherever the \(h_{-1}\)โ€‹ is zero and drifts eventually.

    Consequently, it suffers from a severe multiple-locking problem with an adaptive DFE

image-20240812232618238

Kwangho Lee, "Design of Receiver with Offset Cancellation of Adaptive Equalizer and Multi-Level Baud-Rate Phase Detector" [https://s-space.snu.ac.kr/bitstream/10371/177584/1/000000167211.pdf]

Pattern filter

pattern main cursor
011 \(s_{011}=-h_1+h_0+h_{-1}\)
110 \(s_{110}=h_1+h_0-h_{-1}\)
100 \(s_{100}=h_1-h_0-h_{-1}\)
001 \(s_{001}=-h_1-h_0+h_{-1}\)

During adapting, we make

  • \(s_{011}\) & \(s_{110}\) are approaching to each other
  • \(s_{100}\) & \(s_{001}\) are approaching to each other

Then, \(h_{-1}\) and \(h_1\) are same, which is desired

Bang-Bang CDR

alexander PD or !!PD

The alexander PD locks that edge clock (clkedge) is located at zero crossings of the data. The \(h_{-0.5}\) and \(h_{0.5}\) are equal at the lock point, where the \(h_{-0.5}\) and \(h_{0.5}\) are the cursors located at -0.5 UI and 0.5 UI.

Kwangho Lee, "Design of Receiver with Offset Cancellation of Adaptive Equalizer and Multi-Level Baud-Rate Phase Detector" [https://s-space.snu.ac.kr/bitstream/10371/177584/1/000000167211.pdf]

Shahramian, Shayan, "Adaptive Decision Feedback Equalization With Continuous-time Infinite Impulse Response Filters" [https://tspace.library.utoronto.ca/bitstream/1807/77861/3/Shahramian_Shayan_201606_PhD_thesis.pdf]

MENIN, DAVIDE, "Modelling and Design of High-Speed Wireline Transceivers with Fully-Adaptive Equalization" [https://air.uniud.it/retrieve/e27ce0ca-15f7-055e-e053-6605fe0a7873/Modelling%20and%20Design%20of%20High-Speed%20Wireline%20Transceivers%20with%20Fully-Adaptive%20Equalization.pdf]

reference

Stojanovic, Vladimir & Ho, A. & Garlepp, B. & Chen, Fred & Wei, J. & Alon, Elad & Werner, C. & Zerbe, J. & Horowitz, M.A.. (2004). Adaptive equalization and data recovery in a dual-mode (PAM2/4) serial link transceiver. IEEE Symposium on VLSI Circuits, Digest of Technical Papers. 348 - 351. 10.1109/VLSIC.2004.1346611.

A. A. Bazargani, H. Shakiba and D. A. Johns, "MMSE Equalizer Design Optimization for Wireline SerDes Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, doi: 10.1109/TCSI.2023.3328807.

Masum Hossain, ISSCC2023 T11: "Digital Equalization and Timing Recovery Techniques for ADC-DSP-based Highspeed Links" [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T11.pdf]

โ€”, "LOW POWER DIGITAL EQUALIZATION FOR HIGH SPEED SERDES" [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/SSCS_invited_talk.pdf]

A. Sharif-Bakhtiar, A. Chan Carusone, "A Methodology for Accurate DFE Characterization," IEEE RFIC Symposium, Philadelphia, Pennsylvania, June 2018. [PDF] [Slides โ€“ PDF]

Noise Analysis

TODO ๐Ÿ“…

The StrongARM latch completes switching actions and noise injections even before the output begins to change


slower rise time improve input-referred noise

image-20241109222805267

Noise Simulation

PSS + Pnoise Method

SNR during sampling region and decision region increase

SNR during regeneration region is constant, where noise is critical

\[ \text{SNR} = \frac{V_{o,sig}^2}{V_{o,n}^2} = \frac{V_{i,sig}^2}{V_{i,n}^2} \]

we can get \(V_{i,n}^2 = \frac{V_{i,sig}^2}{\text{SNR}}\), which is constant also

That is \[ V_{i,n}^2 = \frac{V_{i,sig}^2}{V_{o,sig}^2}V_{o,n}^2 = \frac{V_{o,n}^2}{A_v^2} \] where \(V_{i,sig}\) is constant signal is applied to input of comparator


image-20241109163928889

Transient Noise Method

Noise Fmax sets the bandwidth of the random noise sources that are injected at each time point in the transient analysis


image-20241109154528160

image-20241109154249513

We can identify the RMS noise value easily by looking at 15.9% or 84.1% of CDF (\(1\sigma\)), the input-referred noise in the RMS is 0.9mV

image-20241109160311684

Thus, if \(V_S\) is chosen so as to reduce the probability of zeros to 16%, then \(V_S = 1\sigma\), which is also the total root-mean square (rms) noise referred to the input.

Comparison of two methods

It seems that \(\sigma_\text{pnoise} = \sqrt{2}\sigma_\text{trannoise}\), the factor \(\sqrt{2}\) is implicitly in formula in ADC Rak of Cadence

E. Gillen, G. Panchanan, B. Lawton and D. O'Hare, "Comparison of transient and PNOISE simulation techniques for the design of a dynamic comparator," 2022 33rd Irish Signals and Systems Conference (ISSC), Cork, Ireland, 2022, pp. 1-5

Chenguang Yang, "Comparator Design for High Speed ADC" [https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9164380&fileOId=9164388]

J. Conrad, J. Kauffman, S. Wilhelmstatter, R. Asthana, V. Belagiannis and M. Ortmanns, "Confidence Estimation and Boosting for Dynamic-Comparator Transient-Noise Analysis," 2024 22nd IEEE Interregional NEWCAS Conference (NEWCAS), Sherbrooke, QC, Canada, 2024, pp. 1-5

Common-Mode (Vcmi) Variation Effects

image-20240925225059596

image-20240925225823184

offset simulation

TODO ๐Ÿ“…

T. Caldwell. ECE 1371S Advanced Analog Circuits [http://individual.utoronto.ca/trevorcaldwell/course/comparators.pdf]

Eric Chang. EECS240-s18 Discussion 9


image-20241109092310123

Graupner, Achim & Sobe, Udo. (2007). Offset-Simulation of Comparators. [https://designers-guide.org/analysis/comparator.pdf]

1
2
3
4
Comment on "Offset-Simulation of Comparators"

If the input referred offset follows a normal distribution than it is sufficient to apply a single offset voltage to calculate the offset voltage.
See details in Razavi, B., The StrongARM Latch [A Circuit for All Seasons], IEEE Solid-State Circuits Magazine, Volume:7, Issue: 2, Spring 2015

Omran, Hesham. (2019). Fast and accurate technique for comparator offset voltage simulation. Microelectronics Journal. 89. 10.1016/j.mejo.2019.05.004.

Matthews, Thomas W. and Perry L. Heedley. โ€œA simulation method for accurately determining DC and dynamic offsets in comparators.โ€ 48th Midwest Symposium on Circuits and Systems, 2005. (2005): 1815-1818 Vol. 2. [https://athena.ecs.csus.edu/~pheedley/MSDL/MSDL_DOTB_cmp_test_bench_MWSCAS05.pdf]

Hysteresis

P. Bruschi: Notes on Mixed Signal Design http://www2.ing.unipi.it/~a008309/mat_stud/MIXED/archive/2019/Optional_notes/Chap_3_4_Comparators.pdf

TODO ๐Ÿ“…

Kickback Noise

Kickback noise trades with the dimensions of the input transistors and hence with the offset voltage

  • affects the comparator's own decision
  • corrupts the input voltage while it is sensed by other circuits

image-20241110004944542

Tetsuya Iizuka,VLSI2021_Workshop3 "Nyquist A/D Converter Design in Four Days"

Figueiredo, Pedro & Vital, Joรฃo. (2006). Kickback noise reduction techniques for CMOS latched comparators. Circuits and Systems II: Express Briefs, IEEE Transactions on. 53. 541 - 545. 10.1109/TCSII.2006.875308. [https://sci-hub.se/10.1109/TCSII.2006.875308]

P. M. Figueiredo and J. C. Vital, "Low kickback noise techniques for CMOS latched comparators," 2004 IEEE International Symposium on Circuits and Systems (ISCAS), Vancouver, BC, Canada, 2004, pp. I-537 [https://sci-hub.se/10.1109/ISCAS.2004.1328250]

Lei, Ka Meng & Mak, Pui-In & Martins, R.P.. (2013). Systematic analysis and cancellation of kickback noise in a dynamic latched comparator. Analog Integrated Circuits and Signal Processing. 77. 277-284. 10.1007/s10470-013-0156-1. [https://rto.um.edu.mo/wp-content/uploads/docs/ruimartins_cv/publications/journalpapers/57.pdf]

O. M. รvarsson, "Comparator Kickback Reduction Techniques for High-Speed ADCs," Dissertation, 2024. [https://liu.diva-portal.org/smash/get/diva2:1872476/FULLTEXT01.pdf]

CMOS Latch

TODO ๐Ÿ“…

image-20241215162321832 \[ V_{o,fb}^+ - V_{o,fb}^- = \frac{g_m}{sC_L}(V_o^+ - V_o^-) = A(s)\cdot(V_o^+ - V_o^-) \]

We have \[ A(s)\cdot (V_{i} + V_o) = V_o \]

that is \[ V_o = \frac{A(s)}{1-A(s)}V_{i} = \frac{1}{s - g_m/C_L}\cdot \frac{g_mV_i}{C_L} \]

therefore \[ V_o(t) = \frac{g_mV_i}{C_L}\cdot\exp\left({\frac{g_m}{C_L}t}\right) = V_o(t=0)\cdot\exp\left({\frac{g_m}{C_L}t}\right) \] image-20241215173645188

Asad Abidi, ISSCC 2023: Circuit Insights "The CMOS Latch" [https://youtu.be/sVe3VUTNb4Q?si=Pl75jWiA0kNPOlOs]

Metastability

TODO ๐Ÿ“…

If the comparator can not generate a well-defined logical output in half of the clock period, we say the circuit is "metastable"

image-20241215162430509

Pre-amp (preamplifier)

preampSong202412181018

Vishal Saxena "CMOS Comparator Design Extra Slides" [https://www.eecis.udel.edu/~vsaxena/courses/ece614/Handouts/Comparator%20Slides.pdf]

Math Background

Relating \(\Phi\) and erf

Error Function (Erf) of the standard Normal distribution \[ \text{Erf}(x) = \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2} \mathrm{d}t. \] Cumulative Distribution Function (CDF) of the standard Normal distribution \[ \Phi(x) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-z^2/2} \mathrm{d}z. \]

Figure

\[\begin{align} \Phi(x) &= \frac{\text{Erf}(x/\sqrt{2})+1}{2}. \\ \Phi(x\sqrt{2}) &= \frac{\text{Erf}(x) + 1}{2} \end{align}\]

Considering the mean and standard deviation \[ \Phi(x,\mu,\sigma)=\frac{1}{2}\left( 1+\text{Erf} \left( \frac{x-\mu}{\sigma\sqrt{2}} \right)\right) \]


image-20241109135425126

John D. Cook. Relating ฮฆ and erf [https://www.johndcook.com/erf_and_normal_cdf.pdf]

reference

Xu, H. (2018). Mixed-Signal Circuit Design Driven by Analysis: ADCs, Comparators, and PLLs. UCLA. ProQuest ID: Xu_ucla_0031D_17380. Merritt ID: ark:/13030/m5f52m8x. Retrieved from [https://escholarship.org/uc/item/88h8b5t3]

A. Abidi and H. Xu, "Understanding the Regenerative Comparator Circuit," Proceedings of the IEEE 2014 Custom Integrated Circuits Conference, San Jose, CA, 2014, pp. 1-8. [https://picture.iczhiku.com/resource/ieee/WHiYwoUjPHwZPXmv.pdf]

T. Sepke, P. Holloway, C. G. Sodini and H. -S. Lee, "Noise Analysis for Comparator-Based Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 541-553, March 2009 [https://dspace.mit.edu/bitstream/handle/1721.1/61660/Speke-2009-Noise%20Analysis%20for%20Comparator-Based%20Circuits.pdf]

Sepke, Todd. "Comparator design and analysis for comparator-based switched-capacitor circuits." (2006). [https://dspace.mit.edu/handle/1721.1/38925]

P. Nuzzo, F. De Bernardinis, P. Terreni and G. Van der Plas, "Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1441-1454, July 2008 [https://picture.iczhiku.com/resource/eetop/SYirpPPPaAQzsNXn.pdf]


J. Kim, B. S. Leibowitz, J. Ren and C. J. Madden, "Simulation and Analysis of Random Decision Errors in Clocked Comparators," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 8, pp. 1844-1857, Aug. 2009, doi: 10.1109/TCSI.2009.2028449. URL:https://people.engr.tamu.edu/spalermo/ecen689/simulation_analysis_clocked_comparators_kim_tcas1_2009.pdf

J. Kim, B. S. Leibowitz and M. Jeeradit, "Impulse sensitivity function analysis of periodic circuits," 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 386-391, doi: 10.1109/ICCAD.2008.4681602. [https://websrv.cecs.uci.edu/~papers/iccad08/PDFs/Papers/05C.2.pdf]

Jaeha Kim, Lecture 12. Aperture and Noise Analysis of Clocked Comparators URL:https://ocw.snu.ac.kr/sites/default/files/NOTE/7038.pdf

Sam Palermo. ECEN720: High-Speed Links Circuits and Systems Spring 2023 Lecture 6: RX Circuits [https://people.engr.tamu.edu/spalermo/ecen689/lecture6_ee720_rx_circuits.pdf]


Y. Luo, A. Jain, J. Wagner and M. Ortmanns, "Input Referred Comparator Noise in SAR ADCs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 5, pp. 718-722, May 2019. [https://sci-hub.se/10.1109/TCSII.2019.2909429]

Art Schaldenbrand, Senior Product Manager, Keeping Things Quiet: A New Methodology for Dynamic Comparator Noise Analysis URL:https://www.cadence.com/content/dam/cadence-www/global/en_US/videos/tools/custom-_ic_analog_rf_design/NoiseAnalyisposting201612Chalk%20Talk.pdf

X. Tang et al., "An Energy-Efficient Comparator With Dynamic Floating Inverter Amplifier," in IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp. 1011-1022, April 2020 [https://sci-hub.se/10.1109/JSSC.2019.2960485]

Chen, Long & Sanyal, Arindam & Ma, Ji & Xiyuan, Tang & Sun, Nan. (2016). Comparator Common-Mode Variation Effects Analysis and its Application in SAR ADCs. 10.1109/ISCAS.2016.7538972. [https://labs.engineering.asu.edu/mixedsignals/wp-content/uploads/sites/58/2017/08/ISCAS_comp_long_2016.pdf]

V. Stojanovic, and V. G. Oklobdzija, "Comparative Analysis of Masterโ€“Slave Latches and Flip-Flops for High-Performance and Low-Power Systems," IEEE J. Solid-State Circuits, vol. 34, pp. 536โ€“548, April 1999. [https://www.ece.ucdavis.edu/~vojin/CLASSES/EEC280/Web-page/papers/Clocking/Vlada-Latches-JoSSC-Apr-1999.pdf]

C. Mangelsdorf, "Metastability: Deeply misunderstood [Shop Talk: What You Didnโ€™t Learn in School]," in IEEE Solid-State Circuits Magazine, vol. 16, no. 2, pp. 8-15, Spring 2024

B. Razavi, "The Design of a Comparator [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 12, Issue. 4, pp. 8-14, Fall 2020. https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_4_2020.pdf

B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Issue. 2, pp. 12-17, Spring 2015. https://www.seas.ucla.edu/brweb/papers/Journals/BR_Magzine4.pdf

CHUNG-CHUN (CC) CHEN. Why Transient Noise (Trannoise) Analysis for A Strong-arm Latch / Comparator? [https://youtu.be/gpQggSM9_PE?si=apMd6yWVO1JHOHm_]

CHUNG-CHUN (CC) CHEN. Why A Dedicated Noise Analysis for A Strong-arm Latch / Comparator? [https://youtu.be/S5GnvFxuxUA?si=w38iLvzjr0azhu43]

Rabuske, Taimur & Fernandes, Jorge. (2014). Noise-aware simulation-based sizing and optimization of clocked comparators. Analog Integr. Circuits Signal Process.. 81. 723-728. 10.1007/s10470-014-0428-4. [https://sci-hub.se/10.1007/s10470-014-0428-4]

Rabuske, Taimur & Fernandes, Jorge. (2016). Charge-Sharing SAR ADCs for Low-Voltage Low-Power Applications. 10.1007/978-3-319-39624-8.

discrete-time frequency: \(\hat{\omega}=\omega T_s\), units are radians per sample


Below diagram show the windowing effect and sampling

NinDFT.drawio

For general window function, we know \(W(e^{j\hat{\omega}})=\frac{1}{T_s}W_c(j\frac{\hat\omega}{T_s})\),

\[ \frac{W_c(j\frac{\hat{\omega}}{T_s})X_c(j\frac{\hat{\omega}}{T_s})}{T_s}\cdot \frac{1}{2\pi} = \frac{T_sW(e^{j\hat{\omega}})X_c(j\frac{\hat\omega}{T_s})}{T_s}\cdot \frac{1}{2\pi}=W(e^{j\hat{\omega}})X_c(j\frac{\hat\omega}{T_s})\cdot \frac{1}{2\pi} \overset{\hat{\omega}=0}{\Longrightarrow} \sum_{n=-N_w}^{+N_w}w[n] \cdot X_c(j\omega)\cdot \frac{1}{2\pi} \]

e.g. \(\frac{W_c(j\omega|\omega=0)}{T_s} = N\) for Rectangular Window, shown in above figure

warmup

Continuous-time signals \(x_c(t)\) Discrete-time signals \(x[n]\)
Aperiodic signals Continuous Fourier transform Discrete-time Fourier transform
Periodic signals Fourier series Discrete Fourier transform

Continuous Time Fourier Series (CTFS)

\[\begin{align} a_k &= \frac{1}{T}\int_T x(t)e^{-jk(2\pi/T)) t}dt \\ x(t) &= \sum_{k=-\infty}^{+\infty}a_ke^{jk(2\pi/T) t} \end{align}\]

Continuous-Time Fourier transform (CTFT)

\[\begin{align} X(j\omega) &=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}dt \\ x(t)&= \frac{1}{2\pi}\int_{-\infty}^{+\infty}X(j\omega)e^{j\omega t}d\omega \end{align}\]

[https://www.rose-hulman.edu/class/ee/yoder/ece380/Handouts/Fourier%20Transform%20Tables%20w.pdf]

image-20240831104459715

Discrete-Time Fourier Transform (DTFT)

\[\begin{align} X(e^{j\hat{\omega}}) &=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\hat{\omega} n} \\ x[n] &= \frac{1}{2\pi}\int_{2\pi}X(e^{j\hat{\omega}})e^{j\hat{\omega} n}d\hat{\omega} \end{align}\]

DTFT is defined for infinitely long signals as well as finite-length signal

DTFT is continuous in the frequency domain

We could verify that is the correct inverse DTFT relation by substituting the definition of the DTFT and rearranging terms


image-20240831152155093

Discrete-Time Fourier Series (DTFS)

TODO ๐Ÿ“…

Discrete Fourier Series (DFS)

TODO ๐Ÿ“…

Discrete Fourier Transform (DFT)

Two steps are needed to change the DTFT sum into a computable form:

  1. the continuous frequency variable \(\hat{\omega}\) must be sampled
  2. the limits on the DTFT sum must be finite

\[\begin{align} X[k] &= \sum_{n=0}^{N-1}x[n]e^{-j(2\pi/N)kn}\space\space\space k=0,1,...,N-1 \\ x[n] &= \frac{1}{N}\sum_{k=0}^{N-1}X[k]e^{j(2\pi/N)kn} \space\space\space n=0,1,...,N-1 \end{align}\]

Part of the proof is given by the following step:

image-20240830222204470

DFT \(X[k]\) is a sampled version of the DTFT \(X(e^{j\hat{\omega}})\), where \(\hat{\omega_k} = \frac{2\pi k}{N}\)

impulse train

CTFT:

image-20240830224755336

image-20240911221811991

using time-sampling property

impulse_train.drawio


DTFT:

Given \(x[n]=\sum_{k=-\infty}^{\infty}\delta(n-k)\)

\[\begin{align} X(e^{j\hat{\omega}}) &= X_s(j\frac{\hat{\omega}}{T}) \\ &= \frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\frac{\hat{\omega}}{T}-\frac{2\pi k}{T}) \\ &= \frac{2\pi}{T}\sum_{k=-\infty}^{\infty}T\delta(\hat{\omega}-2\pi k) \\ &= 2\pi\sum_{k=-\infty}^{\infty}\delta(\hat{\omega}-2\pi k) \end{align}\]

[http://courses.ece.ubc.ca/359/notes/notes_part1_set4.pdf]


Fourier series of impulse train

image-20241106232432131

Dirac delta (impulse) function

image-20241013174738030

image-20241013174801954

[https://bingweb.binghamton.edu/~suzuki/Math-Physics/LN-7_Dirac_delta_function.pdf]

Topic 3 The \(\delta\)-function & convolution. Impulse response & Transfer function [https://www.robots.ox.ac.uk/~dwm/Courses/2TF_2011/2TF-N3.pdf]

image-20241122231208806


impulse scaling

\[ \delta(\alpha t)= \frac{1}{\alpha}\delta( t) \]

where \(\alpha\) is scaling ratio

Multiplication

aka Modulation or Windowing Theorem

CTFT: \[ x_1(t)x_2(t)\overset{FT}{\longrightarrow}\frac{1}{2\pi}X_1(\omega)*X_2(\omega) \]


DTFT:

image-20240909215833750

Duality

image-20240921181908992

image-20240921182105935

Conjugate Symmetry

image-20240921181015717

image-20240921181258063

Parseval's Relation

CTFT:

image-20240830230835764


DTFT:

image-20230516022936168


DFT:

image-20241214002405992

image-20241214002606672

Eigenfunctions & frequency response

Complex exponentials are eigenfunctions of LTI systems, that is,

continuous time: \(e^{j\omega t}\to H(j\omega)e^{j\omega t}\)

discrete time: \(e^{j\hat{\omega}n} \to H(e^{j\hat{\omega}})e^{j\hat{\omega}n}\)

where \(H(j\omega)\), \(H(e^{j\hat{\omega}})\) is frequency response of continuous-time systems and discrete-time systems, which is the function of \(\omega\) and \(\hat{\omega}\) \[\begin{align} H(j\omega) &= \int_{-\infty}^{+\infty}h(t)e^{-j\omega t}dt \\ \\ H(e^{j\hat{\omega}}) &= \sum_{n=-\infty}^{+\infty}h[n]e^{-j\hat{\omega} n} \end{align}\]

The frequency response of discrete-time LTI systems is always a periodic function of the frequency variable \(\hat{\omega}\) with period \(2\pi\)

Sampling Theorem

time-sampling theorem: applies to bandlimited signals

spectral sampling theorem: applies to timelimited signals

Aliasing

The frequencies \(f_{\text{sig}}\) and \(Nf_s \pm f_{\text{sig}}\) (\(N\) integer), are indistinguishable in the discrete time domain.

image-20220626000016184

Given below sequence \[ X[n] =A e^{j\omega T_s n} \]

  1. \(kf_s + \Delta f\)

โ€‹ \[\begin{align} x[n] &= Ae^{j\left( kf_s+\Delta f \right)2\pi T_sn} + Ae^{j\left( -kf_s-\Delta f \right)2\pi T_sn} \\ &= Ae^{j\Delta f\cdot 2\pi T_sn} + Ae^{-j\Delta f\cdot 2\pi T_sn} \end{align}\]

  1. \(kf_s - \Delta f\)

โ€‹ \[\begin{align} x[n] &= Ae^{j\left( kf_s-\Delta f \right)2\pi T_sn} + Ae^{j\left( -kf_s+\Delta f \right)2\pi T_sn} \\ &= Ae^{-j\Delta f\cdot 2\pi T_sn} + Ae^{j\Delta f\cdot 2\pi T_sn} \end{align}\]

complex signal

\[\begin{align} A e^{j(\omega_s + \Delta \omega) T_s n} &= A e^{j(k\omega_s + \Delta \omega) T_s n} \\ A e^{j(\omega_s - \Delta \omega) T_s n} &= A e^{j(k\omega_s - \Delta \omega) T_s n} \end{align}\]

sampling_aliasing.drawio

CTFS & CTFT

Fourier transform of a periodic signal with Fourier series coefficients \(\{a_k\}\) can be interpreted as a train of impulses occurring at the harmonically related frequencies and for which the area of the impulse at the \(k\)th harmonic frequency \(k\omega_0\) is \(2\pi\) times the \(k\)th Fourier series coefficient \(a_k\)

image-20240830225453601

inverse CTFT & inverse DTFT

time domain frequency domain
inverse CTFT \(\delta(t)\) \(\int_{\infty}d\omega\)
inverse DTFT \(\delta[n]\) \(\int_{2\pi}d\hat{\omega}\)

inverse CTFT shall integral from \(-\infty\) to \(+\infty\) to obtain \(\delta(t)\) in time domain, e.g., \(x_s(t)\) impulse train

spectral sampling

image-20240831185532202

spectral sampling by \(\omega_0\), and \(\frac{2\pi}{\omega_0} \gt \tau\) \[ X_{n\omega_0}(\omega) = \sum_{n=-\infty}^{\infty}X(n\omega_0)\delta(\omega - n\omega_0) \] Periodic repetition of \(x(t)\) is \[ x_{n\omega_0}(t) = \frac{1}{\omega_0}\sum_{n=-\infty}^{\infty}x(t -n\frac{2\pi}{\omega_0})=\frac{T_0}{2\pi}\sum_{n=-\infty}^{\infty}x(t -nT_0) \]

Then, if \(x_{T_0} (t)\), a periodic signal formed by repeating \(x(t)\) every \(T_0\) seconds (\(T_0 \gt \tau\)โ€‹), its CTFT is \[ X_{T_0}(\omega) = \frac{2\pi}{T_0} \cdot X_{n\omega_0}(\omega) = \frac{2\pi}{T_0}\sum_{n=-\infty}^{\infty}X(n\omega_0)\delta(\omega - n\omega_0) \] Then \(x_{T_0} (t)\) can be expressed with inverse CTFT as \[\begin{align} x_{T_0} (t) &= \frac{1}{2\pi}\int_{-\infty}^{\infty}X_{T_0}(\omega)e^{j\omega t}d\omega \\ &= \frac{1}{T_0}\sum_{n=-\infty}^{\infty}X(n\omega_0)e^{jn\omega_0 t} =\sum_{n=-\infty}^{\infty}\frac{1}{T_0}X(n\omega_0)e^{jn\omega_0 t} \end{align}\]

i.e. the coefficients of the Fourier series for \(x_{T_0} (t)\) is \(D_n =\frac{1}{T_0}X(n\omega_0)\)

image-20240831190258683

alternative method by direct Fourier series

image-20240831193912709

Why DFT ?

We can use DFT to compute DTFT samples and CTFT samples

image-20240831201335531

\[ \overline{x}(t) = \sum_{n=0}^{N_0-1}x(nT)\delta(t-nT) \] applying the Fourier transform yieds \[ \overline{X}(\omega) = \sum_{n=0}^{N_0-1}x[n]e^{-jn\omega T} \] But \(\overline{X}(\omega)\), the Fourier transform of \(\overline{x}(t)\) is \(X(\omega)/T\), assuming negligible aliasing. Hence, \[ X(\omega) = T\overline{X}(\omega) = T\sum_{n=0}^{N_0-1}x[n]e^{-jn\omega T} \] and \[ X(k\omega_0) = T\sum_{n=0}^{N_0-1}x[n]e^{-jn k\omega_0 T} \] with \(\hat{\omega}_0 = \omega_0 T\) \[ X(k\omega_0) = T\sum_{n=0}^{N_0-1}x[n]e^{-jn k\hat{\omega}_0} \] i.e. the relationship between CTFT and DFT is \(X(k\omega_0) = T\cdot X[k]\), DFT is a tool for computing the samples of CTFT

C/D

Sampling with a periodic impulse train, followed by conversion to a discrete-time sequence

image-20240901155629500

image-20240830231619897

The periodic impulse train is \[ s(t) = \sum_{n=-\infty}^{\infty}\delta(t-nT) \] \(x_s(t)\) can be expressed as \[ x_s(t) = \sum_{n=-\infty}^{\infty}x_c(nT)\delta(t-nT) \] i.e., the size (area) of the impulse at sample time \(nT\) is equal to the value of the continuous-time signal at that time.

\(x_s(t)\)โ€‹ is, in a sense, a continuous-time signal (specifically, an impulse train)

samples of \(x_c(t)\) are represented by finite numbers in \(x[n]\) rather than as the areas of impulses, as with \(x_s(t)\)

Frequency-Domain Representation of Sampling

The relationship between the Fourier transforms of the input and the output of the impulse train modulator \[ X_s(j\omega) = \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(\omega -k\omega_s)) \] where \(\omega_s\) is the sampling frequency in radians/s


\(X(e^{j\hat{\omega}})\), the discrete-time Fourier transform (DTFT) of the sequence \(x[n]\), in terms of \(X_s(j\omega)\) and \(X_c(j\omega)\)

continuous-time Fourier transform discrete-time Fourier transform
\(x_s(t) = \sum_{n=-\infty}^{\infty}x_c(nT)\delta(t-nT)\) \(x[n]=x_c(nT)\)
\(X_s(j\omega)=\sum_{n=-\infty}^{\infty}x_c(nT)e^{-j\omega Tn}\) \(X(e^{j\hat{\omega}})=\sum_{n=-\infty}^{\infty}x_c(nT)e^{-j\hat{\omega} n}\)

\[ X(e^{j\omega T}) = \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(\omega-k\omega_s)) \] or equivalently, \[ X(e^{j\hat{\omega}}) = \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(\frac{\hat{\omega}}{T}-\frac{2\pi k}{T})) \]

\(X(e^{j\hat{\omega}})\) is a frequency-scaled version of \(X_s(j\omega)\) with the frequency scaling specified by \(\hat{\omega} =\omega T\)

Ref. 9.5 DTFT connection with the CTFT

image-20240831154638540

Here, \(\Omega = \omega T\)

The factor \(\frac{1}{T}\) in \(X(e^{j\hat{\omega}})\) is misleading, actually \(x[n]\) is not scaled by \(\frac{1}{T}\) when taking \(\hat{\omega}\) variable of integration into account \[\begin{align} x_r[n] &= \frac{1}{2\pi} \int_{2\pi}X(e^{j\hat{\omega}})e^{j\hat{\omega} n}d\hat{\omega} \\ &= \frac{1}{2\pi}\int_{2\pi}\frac{1}{T}\sum_{k=-\infty}^{+\infty}X_c \left[ j\left(\frac{\hat{\omega}}{T} - \frac{2\pi k}{T}\right)\right] e^{j\hat{\omega} n}d\hat{\omega} \\ &\approx \frac{1}{2\pi}\frac{1}{T}\int_{2\pi}X_c (\frac{\hat{\omega}}{T} ) e^{j\hat{\omega} n} d\hat{\omega} \\ &=\frac{1}{2\pi} \frac{1}{T}\int_{2\pi} \left[ \int_{\infty}X_c(\Phi)\delta (\Phi - \frac{\hat{\omega}}{T} )d\Phi \right] e^{j\hat{\omega} n} d\hat{\omega} \\ &=\frac{1}{2\pi} \frac{1}{T} \int_{\infty}X_c(\Phi)d\Phi \int_{2\pi}\delta (\Phi - \frac{\hat{\omega}}{T} )e^{j\hat{\omega} n} d\hat{\omega} \\ &=\frac{1}{2\pi} \frac{1}{T} \int_{\infty}X_c(\Phi)d\Phi \int_{2\pi}T\cdot \delta (\Phi T - \hat{\omega} )e^{j\hat{\omega} n} d\hat{\omega} \\ &=\frac{1}{2\pi} \int_{\infty}X_c(\Phi) e^{j\Phi T n}d\Phi \end{align}\]

That is \[\begin{align} x_r[n] &= \frac{1}{2\pi}\int_{2\pi} \frac{1}{T}X_c (\frac{\hat{\omega}}{T} ) e^{j\hat{\omega} n} d\hat{\omega} \\ &= \frac{1}{2\pi} \int_{\infty}X_c(\omega) e^{j\omega T n}d\omega \tag{31} \end{align}\]

assuming Nyquistโ€“Shannon sampling theorem is met

\[\begin{align} x_r[n] &= \frac{1}{2\pi} \int_{\infty}X_c(\omega) e^{j\omega T n}d\omega \\ &= \frac{1}{2\pi} \int_{\infty}X_c(\omega) e^{j\omega t_n}d\omega \\ &= x_c(t_n) \end{align}\]

where \(t_n = T n\), then \(x_r[n] = x_c(nT)\)


Assuming \(x_c(t) = \cos(\omega_0 t)\), \(x_s(t)= \sum_{n=-\infty}^{\infty}x_c(nT)\delta(t-nT)\) and \(x[n]=x_c(nT)\), that is \[\begin{align} x_c(t) & = \cos(\omega_0 t) \\ x_s(t) &= \sum_{n=-\infty}^{\infty}\cos(\omega_0 nT)\delta(t-nT) \\ x[n] &= \cos(\omega_0 nT) \end{align}\]

  • \(X_c(j\omega)\), the Fourier Transform of \(x_c(t)\) \[ X_c(j\omega) = \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \]

  • \(X(e^{j\hat{\omega}})\), the the discrete-time Fourier transform (DTFT) of the sequence \(x[n]\) \[ X(e^{j\hat{\omega}}) =\sum_{k=-\infty}^{+\infty}\pi[\delta(\hat{\omega} - \hat{\omega}_0-2\pi k) + \delta(\hat{\omega} + \hat{\omega}_0-2\pi k)] \]

  • \(X_s(j\omega)\), the Fourier Transform of \(x_s(t)\) \[ X_s(j\omega)= \frac{1}{T}\sum_{k=-\infty}^{+\infty}\pi[\delta(\omega - \omega_0-k\omega_s) + \delta(\omega + \omega_0-k\omega_s)] \]

Express \(X(e^{j\hat{\omega}})\) in terms of \(X_s(j\omega)\) and \(X_c(j\omega)\) \[ X(e^{j\hat{\omega}}) = \frac{1}{T}\sum_{k=-\infty}^{+\infty}\pi[\delta(\frac{\hat{\omega}}{T} - \omega_0-k\omega_s) + \delta(\frac{\hat{\omega}}{T} + \omega_0-k\omega_s)] \] Inverse \(X(e^{j\hat{\omega}})\) \[\begin{align} x_r[n] &= \frac{1}{2\pi} \int_{2\pi}X(e^{j\hat{\omega}}) e^{j\hat{\omega} n} d\hat{\omega} \\ &= \frac{1}{2\pi}\int_{2\pi} \pi[\delta(\frac{\hat{\omega}}{T} - \omega_0) + \delta(\frac{\hat{\omega}}{T} + \omega_0)]e^{j\hat{\omega} n} d\frac{\hat{\omega}}{T} \\ &= \frac{1}{2\pi}\int_{2\pi} \pi[\delta(\frac{\hat{\omega}}{T} - \omega_0)e^{j\hat{\omega}_0 n} + \delta(\frac{\hat{\omega}}{T} + \omega_0)e^{-j\hat{\omega}_0 n}] d\frac{\hat{\omega}}{T} \\ &= \frac{1}{2}[ e^{j\hat{\omega}_0 n}\int_{2\pi} [\delta(\frac{\hat{\omega}}{T} - \omega_0)d\frac{\hat{\omega}}{T} + e^{-j\hat{\omega}_0 n}\int_{2\pi} [\delta(\frac{\hat{\omega}}{T} + \omega_0)d\frac{\hat{\omega}}{T}] \\ &= \frac{1}{2}[ e^{j\hat{\omega}_0 n} + e^{-j\hat{\omega}_0 n} ] \\ &= \cos(\hat{\omega}_0 n) \end{align}\]

or follow EQ.(31)

\[\begin{align} x_r[n] &= \frac{1}{2\pi} \int_{\infty}X_c(\omega) e^{j\omega T n}d\omega \\ &= \frac{1}{2\pi} \int_{\infty} \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]e^{j\omega T n}d\omega \\ &= \frac{1}{2}(e^{j\omega_0 T n}+e^{-j\omega_0 T n}) \\ &= \cos(\hat{\omega}_0 n) \end{align}\]

where \(\hat{\omega}_0 = \omega_0 T\)

D/C

image-20240831161852787

image-20240831162625943

image-20240831162559492

image-20241024220244992

zero padding

This option increases \(N_0\), the number of samples of \(x(t)\), by adding dummy samples of 0 value. This addition of dummy samples is known as zero padding.

We should keep in mind that even if the fence were transparent, we would see a reality distorted by aliasing.

Zero padding only allows us to look at more samples of that imperfect reality

Gotcha

A remarkable fact of linear systems is that the complex exponentials are eigenfunctions of a linear system, as the system output to these inputs equals the input multiplied by a constant factor.

  • Both amplitude and phase may change
  • but the frequency does not change

For an input \(x(t)\), we can determine the output through the use of the convolution integral, so that with \(x(t) = e^{st}\) \[\begin{align} y(t) &= \int_{-\infty}^{+\infty}h(\tau)x(t-\tau)d\tau \\ &= \int_{-\infty}^{+\infty} h(\tau) e^{s(t-\tau)}d\tau \\ &= e^{st}\int_{-\infty}^{+\infty} h(\tau) e^{-s\tau}d\tau \\ &= e^{st}H(s) \end{align}\]

Take the input signal to be a complex exponential of the form \(x(t)=Ae^{j\phi}e^{j\omega t}\)

\[\begin{align} y(t) &= h(t)*x(t) \\ &= H(j\omega)Ae^{j\phi}e^{j\omega t} \end{align}\]

The frequency response at \(-\omega\) is the complex conjugate of the frequency response at \(+\omega\), given \(h(t)\) is real

\[\begin{align} H^*(t) &= \left(\int_{-\infty}^{+\infty}h(t)e^{-j\omega t}dt\right)^* \\ &= \int_{-\infty}^{+\infty}h^*(t)e^{+j\omega t}dt \\ &= \int_{-\infty}^{+\infty}h(t)e^{-j(-\omega t)}dt \\ &= H(-j\omega) \end{align}\]

The real cosine signal is actually composed of two complex exponential signals: one with positive frequency and the other with negative \[ cos(\omega t + \phi) = \frac{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}}{2} \]

The sinusoidal response is the sum of the complex-exponential response at the positive frequency \(\omega\) and the response at the corresponding negative frequency \(-\omega\) because of LTI systems's superposition property

  • input: \[\begin{align} x(t) &= A cos(\omega t + \phi) \\ &= \frac{1}{2}Ae^{\phi}e^{\omega t} + \frac{1}{2}Ae^{-\phi}e^{-\omega t} \end{align}\]

  • output with \(H(j\omega)=Ge^{j\theta}\): \[\begin{align} y(t) &= H(j\omega)\frac{1}{2}Ae^{\phi}e^{\omega t} + H(-j\omega)\frac{1}{2}Ae^{-\phi}e^{-\omega t} \\ &= Ge^{j\theta}\frac{1}{2}Ae^{\phi}e^{\omega t} + Ge^{-j\theta}\frac{1}{2}Ae^{-\phi}e^{-\omega t} \\ &= GAcos(\omega t + \phi + \theta) \end{align}\]

Its phase shift is \(\theta\) and gain is \(G\), which is same with \(H(j\omega)\).

reference

Alan V Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing, 3rd edition [pdf]

B.P. Lathi, Roger Green. Linear Systems and Signals (The Oxford Series in Electrical and Computer Engineering) 3rd Edition [pdf]

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. 1996. Signals & systems (2nd ed.) [pdf]

James H. McClellan, Ronald Schafer, and Mark Yoder. 2015. DSP First (2nd. ed.). Prentice Hall Press, USA

image-20241003132122679


CDAC intuition

The charge redistribution capacitor network is used to sample the input signal and serves as a digital-to-analog converter (DAC) for creating and subtracting reference voltages

sampling charge \[ Q = V_{in} C_{tot} \] conversion charge \[ Q = -C_{tot}V_c + V_{ref}C_\Delta \] That is \[ V_c = \frac{C_\Delta}{C_{tot}}V_{ref} - V_{in} \]


CDAC is actually working as a capacitive divider during conversion phase, the charge of internal node retain (charge conservation law)

assuming \(\Delta V_i\) is applied to series capacitor \(C_1\) and \(C_2\)

cap_divider.drawio \[ (\Delta V_i - \Delta V_x) C_1 = \Delta V_x \cdot C_2 \] Then \[ \Delta V_x = \frac{C_1}{C_1+C_2}\Delta V_i \]

\(V_x= V_{x,0} + \Delta V_x\)

CDAC settling accuracy

cdac-tau.drawio \[\begin{align} V_x(s) &= \frac{C_1+C_2}{RC_1C_2}\cdot \frac{1}{s+\frac{C_1+C_2}{RC_1C_2}}\cdot V_i(s) \\ &= \frac{1}{\tau}\cdot \frac{1}{s+\frac{1}{\tau}}\cdot \frac{1}{s}\\ &= \frac{1}{\tau}\cdot \tau(\frac{1}{s} - \frac{1}{s+\frac{1}{\tau}})=\frac{1}{s} - \frac{1}{s+\frac{1}{\tau}} \end{align}\]

inverse Laplace Transform is \(V_x(t) = 1 - e^{-t/\tau}\)

\[\begin{align} V_y(s) &= V_x\frac{C_1}{C_1+C_2} \\ &= \frac{C_1}{C_1+C_2} \left(\frac{1}{s} - \frac{1}{s+\frac{1}{\tau}}\right)\\ \end{align}\]

inverse Laplace Transform is \(V_y(t) = \frac{C_1}{C_1+C_2}\left(1 - e^{-t/\tau}\right)\)

\(V_x(t)\) and \(V_y(t)\) prove that the settling time is same

\(\tau = R\frac{C_1C_2}{C_1+C_2}\), which means usually worst for MSB capacitor (largest)

both \(\tau\) and \(\Delta V\) are the maximum

A popular way to improve the settling behavior, again, is to employ unit-element DACs that statistically reduce the switching activities, which, unfortunately, exhibits unnecessary complications to the power, area and speed tradeoffs of the design

CDAC Energy Consumption

\[ E_{Vref} = \int P(t)dt = \int V_{ref} I(t) dt = V_{ref}\int I(t)dt = V_{ref}\cdot \Delta Q \]

image-20240922093524720

Given \(V_{c,0}=\frac{1}{2}V_{ref}-V_{in}\) and \(V_{c,1}=\frac{3}{4}V_{ref}-V_{in}\) \[\begin{align} Q_{b0,0} &= \left(V_{ref} - V_{c,0} \right)\cdot 2C = \left(\frac{1}{2}V_{ref}+V_{in} \right)\cdot 2C \\ Q_{b1,0} &= (0 - V_{c,0})\cdot C = \left(-\frac{1}{2}V_{ref}+V_{in} \right)\cdot C \\ Q_{b0,1} &= \left(V_{ref} - V_{c,1} \right)\cdot 2C = \left(\frac{1}{4}V_{ref}+V_{in} \right)\cdot 2C \\ Q_{b1,1} &= \left(V_{ref} - V_{c,1} \right)\cdot C = \left(\frac{1}{4}V_{ref}+V_{in} \right)\cdot C \end{align}\]

Therefore \[ E_{Vref} = V_{ref}\cdot (Q_{b0,1}+Q_{b1,1} - Q_{b0,0}-Q_{b1,0}) = \frac{1}{4}C V_{ref}^2 \]


CDAC total energy change \[\begin{align} \Delta E_{tot} &= \frac{1}{2}\cdot 2C \cdot (U_{2c,1}^2 - U_{2c,0}^2) + \frac{1}{2}\cdot C \cdot (U_{c,1}^2 - U_{c,0}^2) + \frac{1}{2}\cdot C \cdot (U_{c1,1}^2 - U_{c1,0}^2) \\ &= \left(-\frac{3}{16}V_{ref}^2 - \frac{1}{2}V_{ref}V_{in} - \frac{3}{32}V_{ref}^2+\frac{3}{4}V_{ref}V_{vin} + \frac{5}{32}V_{ref}^2-\frac{1}{4}V_{ref}V_{in}\right)C \\ &= -\frac{1}{8}CV_{ref}^2 \end{align}\]

alternative method

CapEnergy.drawio \[ \Delta E_{tot} = \frac{1}{2}\cdot\frac{3}{4}C\cdot V_{ref}^2 - \frac{1}{2}\cdot C\cdot V_{ref}^2 = -\frac{1}{8}CV_{ref}^2 \]

The total energy decreases by \(-\frac{1}{8}CV_{ref}^2\), though \(V_{ref}\) provides \(\frac{1}{4}C V_{ref}^2\)


The charge redistribution change the CDAC energy

cap_redis_energy.drawio

\[ E_{c,0} = \frac{1}{2}CV^2 \] After charge redistribution \[ E_{c,1} = \frac{1}{2}\cdot 2C\cdot \left(\frac{1}{2}V\right)^2 = \frac{1}{4}CV^2 \]

That make sense, charge redistribution consume energy

Comparator input cap effect

image-20240907194621524 \[ -V_{in}\cdot 2^N C = V_c (2^N C + C_p) \] Then \(V_c = -\frac{2^N C}{2^N C + C_p}V_{in}\), i.e. this capacitance reduce the voltage amplitude by the factor

During conversion \[\begin{align} V_c &= -\frac{2^N C}{2^N C + C_p}V_{in} +V_{ref}\sum_{n=0}^{N-1} \frac{b_n\cdot2^n C}{2^N C + C_p} \\ &= \frac{2^N C}{2^N C + C_p}\left(-V_{in} + V_{ref}\sum_{n=0}^{N-1}\frac{b_n }{2^{N-n}} \right) \end{align}\]

That is, it does not change the sign

Comparator offset effect

image-20240825204030645

Synchronous SAR ADC

It also divides a full conversion into several comparison stages in a way similar to the pipeline ADC, except the algorithm is executed sequentially rather than in parallel as in the pipeline case.

However, the sequential operation of the SA algorithm has traditionally been a limitation in achieving high-speed operation

image-20241021214958488

  • a clock running at least \((N + 1) \cdot F_s\) is required for an \(N\)-bit converter with conversion rate of \(F_s\)
  • every clock cycle has to tolerate the worst case comparison time
  • every clock cycle requires margin for the clock jitter

The power and speed limitations of a synchronous SA design comes largely from the high-speed internal clock

Split Arrary CDAC

Split capacitor, double-array cap

attenuation capacitance \(C_a\)

image-20240917192957721

image-20240918213856504

splitArray.drawio

\[\begin{align} \Delta V_{dac} &= \frac{1}{2}b_3+\frac{1}{4}b_2+\frac{1}{4}\left(\frac{1}{2}b_1+\frac{1}{4}b_0 \right) \\ &= \frac{1}{2}b_3+\frac{1}{4}b_2 + \frac{1}{8}b_1+\frac{1}{16}b_0 \end{align}\]

Asynchronous processing

image-20241021214922564

image-20250102225355547

image-20250102225426799

The maximum resolving time reduction between synchronous and asynchronous case is two fold

reference

Andrea Baschirotto, "T6: SAR ADCs" ISSCC2009

Pieter Harpe, ISSCC 2016 Tutorial: "Basics of SAR ADCs Circuits & Architectures"


Mike Shuo-Wei Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-ฮผm CMOS," in IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006

โ€”. "Power Efficient System and A/D Converter Design for Ultra-Wideband Radio" [http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-71.pdf]

โ€”. "Asynchronous SAR ADC: Past, Present and Beyond" [https://viterbi-web.usc.edu/~swchen/index_files/async_sar_tutorial_chen_final.pdf]

C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010 [https://sci-hub.se/10.1109/JSSC.2010.2042254]

L. Jie et al., "An Overview of Noise-Shaping SAR ADC: From Fundamentals to the Frontier," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 149-161, 2021 [pdf]

W. Liu, P. Huang and Y. Chiu, "A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration," in IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2661-2672, Nov. 2011 [https://sci-hub.st/10.1109/JSSC.2011.2163556]

Track Time

TODO ๐Ÿ“…

ADC Calibration

Offset Calibration

long-term average of all 32 sub-ADC samples = 0

Gain Calibration

long-term average of absolute values of all 32 sub-ADC samples should be equal

Background vs. foreground calibration

TODO ๐Ÿ“…

Ahmed Ali, ISSCC 2021 T5: Calibration Techniques in ADCs [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T5.pdf]

Jiang, Xicheng, ed. Digitally-Assisted Analog and Analog-Assisted Digital IC Design. Cambridge: Cambridge University Press, 2015.

Differential top-plate sampling

TODO ๐Ÿ“…

Maintain constant common-mode during conversion

Redundancy

image-20241221140840026

Max tolerance of comparator offset is \(\pm V_{FS}/4\)

  1. \(b_j\) error is \(\pm 1\)
  2. \(b_{j+1}\) error is \(\pm 2\) , wherein \(b_{j+1}\): \(0\to 2\) or \(1\to -1\)

i.e. complementary analog and digital errors cancel each other, \(V_o +\Delta V_{o}\) should be in over-/under-range comparators (\(-V_{FS}/2 \sim 3V_{FS}/2\))

\[\begin{align} V_{in,j} &= (b_j + \Delta b_j)\cdot \frac{V_{FS}}{2} + \frac{V_{out,j}+\Delta V_{out,j}}{2} \\ V_{in,{j+1}} &= (b_{j+1} + \Delta b_{j+1})\cdot \frac{V_{FS}}{2} + \frac{V_{out,j+1}+\Delta V_{out,j+1}}{2} \end{align}\]

with \(V_{in,j+1} = V_{out,j}+\Delta V_{out,j}\)

\[\begin{align} V_{in,j} &= (b_j + \Delta b_j)\cdot \frac{V_{FS}}{2} + \frac{1}{2} \left\{ (b_{j+1} + \Delta b_{j+1})\cdot \frac{V_{FS}}{2} + \frac{V_{out,j+1}+\Delta V_{out,j+1}}{2} \right\} \\ &= (b_j + \Delta b_j)\cdot \frac{V_{FS}}{2} + \frac{1}{2}(b_{j+1} + \Delta b_{j+1})\cdot \frac{V_{FS}}{2}+ \frac{1}{2}\frac{V_{in,j+2}}{2} \\ &=\tilde{b_j} \cdot \frac{V_{FS}}{2}+ \tilde{b_{j+1}}\cdot \frac{V_{FS}}{4}+ \frac{1}{4}V_{in,j+2} \end{align}\]

where \(b_j\) is 1-bit residue without redundancy and \(\tilde{b_j}\) is redundant bits

image-20241222115022613


Uniform Sub-Radix-2 SAR ADC

image-20241222130625469

Minimal analog complexity, no additional decoding effort

Chang, Albert Hsu Ting. "Low-power high-performance SAR ADC with redundancy and digital background calibration." (2013). [https://dspace.mit.edu/bitstream/handle/1721.1/82177/861702792-MIT.pdf]

Kuttner, Franz. "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS." 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315) 1 (2002): 176-177 vol.1. [https://sci-hub.se/10.1109/ISSCC.2002.992993]

T. Ogawa, H. Kobayashi, et. al., "SAR ADC Algorithm with Redundancy and Digital Error Correction." IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A (2010): 415-423. [paper, slides]

B. Murmann, โ€œOn the use of redundancy in successive approximation A/D converters,โ€ International Conference on Sampling Theory and Applications (SampTA), Bremen, Germany, July 2013. [https://www.eurasip.org/Proceedings/Ext/SampTA2013/papers/p556-murmann.pdf]

Kraฬˆmer, M. et al. (2015) High-resolution SAR A/D converters with loop-embedded input buffer. dissertation. Available at: [http://purl.stanford.edu/fc450zc8031].

sarthak, "Visualising redundancy in a 1.5 bit pipeline ADCโ€œ [https://electronics.stackexchange.com/a/523489/233816]

Testing

TODO ๐Ÿ“…

Kent H. Lundberg "Analog-to-Digital Converter Testing" [https://www.mit.edu/~klund/A2Dtesting.pdf]

Tai-Haur Kuo, Da-Huei Lee "Analog IC Design: ADC Measurement" [http://msic.ee.ncku.edu.tw/course/aic/202309/ch13%20(20230111).pdf] [http://msic.ee.ncku.edu.tw/course/aic/aic.html]

ESE 6680: Mixed Signal Design and Modeling "Lec 20: April 10, 2023 Data Converter Testing" [https://www.seas.upenn.edu/~ese6680/spring2023/handouts/lec20.pdf]

Degang Chen. "Distortion Analysis" [https://class.ece.iastate.edu/djchen/ee435/2017/Lecture25.pdf]

ADC INL/DNL

TODO ๐Ÿ“…

  • Endpoint method
  • BestFit method

image-20241006211529077

image-20241006195931838

INL/DNL Measurements for High-Speed Analog-to Digital Converters (ADCs) [https://picture.iczhiku.com/resource/eetop/sYKTSqLfukeHSmMB.pdf]

Code Density Test

Apply a linear ramp to ADC input

image-20241214100849243

Mid-Rise & Mid-Tread Quantizer

image-20241124225350563

image-20241124230219164

The difference between the lowest and highest levels is called the full-scale (FS) of the quantizer

Bootstrapped Switch

image-20240825222432796

A. Abo et al., "A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to Digital Converter," IEEE J. Solid-State Circuits, pp. 599, May 1999 [https://sci-hub.se/10.1109/4.760369]

Dessouky and Kaiser, "Input switch configuration suitable for rail-to-rail operation of switched opamp circuits," Electronics Letters, Jan. 1999. [https://sci-hub.se/10.1049/EL:19990028]

B. Razavi, "The Bootstrapped Switch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12-15, Summer 2015 [https://www.seas.ucla.edu/brweb/papers/Journals/BRSummer15Switch.pdf]

B. Razavi, "The Design of a bootstrapped Sampling Circuit [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 13, Issue. 1, pp. 7-12, Summer 2021. [http://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_1_2021.pdf]

image-20241108210222043

Quantization Noise & its Spectrum

image-20240825221754959

Quantization noise is less with higher resolution as the input range is divided into a greater number of smaller ranges

This error can be considered a quantization noise with RMS

image-20240925235213137

ENOB & SQNR

The quantization noise power \(P_Q\) for a uniform quantizer with step size \(\Delta\) is given by \[ P_Q = \frac{\Delta ^2}{12} \] For a full-scale sinusoidal input signal with an amplitude equal to \(V_{FS}/2\), the input signal is given by \(x(t) = \frac{V_{FS}}{2}\sin(\omega t)\)

Then input signal power \(P_s\) is \[ P_s = \frac{V_{FS}^2}{8} \] Therefore, the signal-to-quantization noise ratio (SQNR) is given by \[ \text{SQNR} = \frac{P_s}{P_Q} = \frac{V_{FS}^2/8}{\Delta^2/12}=\frac{V_{FS}^2/8}{V_{FS}^2/(12\times 2^{2N})} = \frac{3\times 2^{2N}}{2} \] where \(N\) is the number of quantization bits

When represented in dBs \[ \text{SQNR(dB)} = 10\log(\frac{P_s}{P_Q}) = 10\log(\frac{3\times 2^{2N}}{2})= 20N\log(2) + 10\log(\frac{3}{2})= 6.02N + 1.76 \]

Quantization is NOT Noise

image-20241006152621688

DAC DNL

One difference between ADC and DAC is that DAC DNL can be less than -1 LSB

In a DAC, DNL < -1LSB implies non-monotonicity

image-20241006215420568

DAC INL

image-20241215101400962

The worst INL of three DAC Architecture is same

image-20241215110708021

  • \(A = \sum_{j=1}^k I_j\), \(B=\sum_{j=k+1}^N I_j\)
  • A and B are independent with \(\sigma_A^2 = k\sigma_u^2\) and \(\sigma_B^2=(N-k)\sigma_u^2\)

Therefore \[ \mathrm{Var}\left(\frac{X}{Y}\right)\simeq \frac{k^2}{N^2}\left(\frac{\sigma_i^2}{kI_u^2} + \frac{\sigma_i^2}{NI_u^2} -2\frac{\mathrm{cov}(X,Y)}{kNI_u^2}\right) \] and \[\begin{align} \mathrm{cov}(X,Y) &= E[XY] - E[X]E[Y] = E[A(A+B)] - kNI_u^2 \\ &= E[A^2]+E[A]E[B] - kNI_u^2= \sigma_A^2+E[A]^2 + k(N-k)I_u^2 - kNI_u^2\\ &= k\sigma_i^2 + k^2I_u^2+ k(N-k)I_u^2 - kNI_u^2 \\ &= k\sigma_i^2 \end{align}\]

Finally, \[ \mathrm{Var}\left(\frac{X}{Y}\right)\simeq \frac{k^2}{N^2}\left(\frac{\sigma_i^2}{kI_u^2} + \frac{\sigma_i^2}{NI_u^2} -2\frac{k\sigma_i^2}{kNI_u^2}\right) = \frac{k^2}{N^2}\left(\frac{1}{k}- \frac{1}{N}\right)\sigma_u^2 \] i.e. \[ \mathrm{Var(INL(k))} = k^2\left(\frac{1}{k}- \frac{1}{N}\right)\sigma_u^2 = k\left(1- \frac{k}{N}\right)\sigma_u^2 \]

Standard deviation of INL is maximum at mid-scale (k=N/2)

image-20241215114755896


image-20241215101727644

Bottom plate sampling

Sample signal at the "grounded" side of the capacitor to achieve signal independent sampling

image-20240825231816582

image-20240825232007848

image-20240825232717342

image-20240825233801855

image-20240825233821389


image-20240825233859540

[https://indico.cern.ch/event/1064521/contributions/4475393/attachments/2355793/4078773/esi_sampling_and_converters2022.pdf]

EE 435 Spring 2024 Analog VLSI Circuit Design - Switched-Capacitor Amplifiers Other Integrated Filters, https://class.ece.iastate.edu/ee435/lectures/EE%20435%20Lect%2044%20Spring%202008.pdf

Hold Mode Feedthrough

image-20240820204720277

image-20240820204959977

P. Schvan et al., "A 24GS/s 6b ADC in 90nm CMOS," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, USA, 2008, pp. 544-634

B. Sedighi, A. T. Huynh and E. Skafidas, "A CMOS track-and-hold circuit with beyond 30 GHz input bandwidth," 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Seville, Spain, 2012, pp. 113-116

Tania Khanna, ESE 568: Mixed Signal Circuit Design and Modeling [https://www.seas.upenn.edu/~ese5680/fall2019/handouts/lec11.pdf]

Summing Interleaved Alias

image-20240929215841300

The sampling function - impulse train is \[ s(t) = \sum_{n=-\infty}^{\infty}\left[ \delta(t-n4T_s) + \delta(t-n4T_s-T_s) + \delta(t-n4T_s-2T_s) + \delta(t-n4T_s-3T_s)\right] \]

Its Fourier transform is \[\begin{align} S(f) &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left[\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 2T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 3T_s}\delta(f-k\frac{f_s}{4}) \right] \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-j2\pi\frac{f}{f_s}} + e^{-j4\pi\frac{f}{f_s}} + e^{-j6\pi\frac{f}{f_s}} \right) \delta(f-k\frac{f_s}{4}) \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}} \right) \delta(f-k\frac{f_s}{4}) \end{align}\]

We define \(M[k] = 1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}}\), which is periodic, i.e. \(M[k]=M[k+4]\) \[ M[k]=\left\{ \begin{array}{cl} 4 & : \ k = 4m \\ 0 & : \ k=4m+1 \\ 0 & : \ k=4m+2 \\ 0 & : \ k=4m+3 \\ \end{array} \right. \]

That is \[ S(f) = \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta(f-kf_s) \]

Alias has same frequency for each slice but different phase: Alias terms sum to zero if all slices match exactly

John P. Keane, ISSCC2020, T5: "Fundamentals of Time-Interleaved ADCs"

Random Chopping in TI-ADC

image-20240929215927957

\[ D_n(kT) = (G_n R(kT) V(kT) + O_n)R(kT)= C_n V(kT) + R(kT)O_n \]

coherent sampling

  • integer # of cycles or Windowing
    • avoid spectral leakage
  • \(f_\text{in}\) and \(f_s\) are co-prime
    • avoid periodic quantization errors, manifested as harmonic distortions

To avoid spectral leakage completely, the method of coherent sampling is recommended. Coherent sampling requires that the input- and clock-frequency generators are phase locked, and that the input frequency be chosen based on the following relationship: \[ \frac{f_{\text{in}}}{f_{\text{s}}}=\frac{M_C}{N_R} \]

where:

  • \(f_{\text{in}}\) = the desired input frequency
  • \(f_s\) = the clock frequency of the data converter under test
  • \(M_C\) = the number of cycles in the data window (to make all samples unique, choose odd or prime numbers)
  • \(N_R\) = the data record length (for an 8192-point FFT, the data record is 8192s long)

\[\begin{align} f_{\text{in}} &=\frac{f_s}{N_R}\cdot M_C \\ &= f_{\text{res}}\cdot M_C \end{align}\]


irreducible ratio

An irreducible ratio ensures identical code sequences not to be repeated multiple times. Unnecessary repetition of the same code is not desirable as it increases ADC test time.

Given that \(\frac{M_C}{N_R}\) is irreducible, and \(N_R\) is a power of 2, an odd number for \(M_C\) will always produce an irreducible ratio

Assuming there is a common factor \(k\) between \(M_C\) and \(N_R\), i.e. \(\frac{M_C}{N_R}=\frac{k M_C'}{k N_R'}\)

The samples (\(n\in[1, N_R]\))

\[ y[n] = \sin\left( \omega_{\text{in}} \cdot t_n \right) = \sin\left( \omega_{\text{in}} \cdot n\frac{1}{f_s} \right) = \sin\left( \omega_{\text{in}} \cdot n\frac{1}{f_{\text{in}}}\frac{M_C}{N_R} \right) = \sin\left( 2\pi n\frac{M_C}{N_R} \right) \]

Then

\[ y[n+N_R'] = \sin\left( 2\pi (n+N_R')\frac{M_C}{N_R} \right) = \sin\left( 2\pi n \frac{M_C}{N_R} + 2\pi N_R'\frac{M_C}{N_R}\right) = \sin\left( 2\pi n \frac{M_C}{N_R} + 2\pi N_R'\frac{kM_C'}{kN_R'} \right) = \sin\left( 2\pi n \frac{M_C}{N_R}\right) \]

So, the samples is repeated \(y[n] = y[n+N_R']\). Usually, no additional information is gained by repeating with the same sampling points.


image-20241214135150786

samples of every input cycle are the same - periodic

Thermometer to Binary encoder

image-20241214152349217

Pipeline ADC

image-20241006174924686

CMP reference voltage is 0.5vref, DAC output is 0.5vref or 0

pipelineADC.drawio

residual error \[ V_{r,n} = (V_{r,n-1}-\frac{1}{2}b_{n})\cdot 2 \] and \(V_{r,-1}=V_i\) \[ V_{r,n-1} = 2^{n}V_i -\sum_{k=0}^{n-1}2^{n-k-1}b_k = 2^{n}\left(V_i - \sum_{k=0}^{n-1}\frac{b_k}{2^{k+1}}\right) \]

here, \(b_0\) is first stage and MSB

It divides the process into several comparison stages, the number of which is proportional to the number of bits

Due to the pipeline structure of both analog and digital signal path, inter-stage residue amplification is needed which consumes considerable power and limits high speed operation

Vishal Saxena, "Pipelined ADC Design - A Tutorial"[https://www.eecis.udel.edu/~vsaxena/courses/ece517/s17/Lecture%20Notes/Pipelined%20ADC%20NonIdealities%20Slides%20v1_0.pdf] [https://www.eecis.udel.edu/~vsaxena/courses/ece517/s17/Lecture%20Notes/Pipelined%20ADC%20Slides%20v1_2.pdf]

Bibhu Datta Sahoo, Analog-to-Digital Converter Design From System Architecture to Transistor-level [http://smdpc2sd.gov.in/downloads/IGF/IGF%201/Analog%20to%20Digital%20Converter%20Design.pdf]

Bibhu Datta Sahoo, Associate Professor, IIT, Kharagpur, [https://youtu.be/HiIWEBAYRJY?si=pjQnIdi03i5N7805]


image-20241214164740706

R-2R & C-2C

TODO ๐Ÿ“…

Conceptually, area goes up linearly with number of bit slices

drawback of the R-2R DAC


\(N_b\) bit binary + \(N_t\) bit thermometer DAC

R-2R.drawio

\(N_b\) bit binary can be simplified with Thevenin Equivalent \[ V_B = \sum_{n=0}^{N_b-1} \frac{B_n}{2^{N_b-n}} \] with thermometer code

\[\begin{align} V_o &= V_B\frac{\frac{2R}{2^{N_t}-1}}{\frac{2R}{2^{N_t}-1}+ 2R}+\sum_{n=0}^{2^{N_t}-2}T_n\frac{\frac{2R}{2^{N_t}-1}}{\frac{2R}{2^{N_t}-1}+ 2R} \\ &= \frac{V_B}{2^{N_t}} + \frac{\sum_{n=0}^{2^{N_t}-2}T_n}{2^{N_t}} \\ &= \sum_{n=0}^{N_b-1} \frac{B_n}{2^{N_t+N_b-n}} + \frac{\sum_{n=0}^{2^{N_t}-2}T_n}{2^{N_t}} \end{align}\]

B. Razavi, "The R-2R and C-2C Ladders [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 10-15, Summer 2019 [https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_3_2019.pdf]


4bit binary R2R DAC with Ru=1kOhm

RVB equivalent R

image-20241214190045688

Binary-Weighted (BW) DAC

image-20241215094852761

During \(\Phi_1\), all capacitor are shorted, the net charge at \(V_x\) is 0

During \(\Phi_2\), the charge at bottom plate of CDAC \[ Q_{DAC,btm} = \sum_{i=0}^{N-1}(b_i\cdot V_R - V_x)\cdot 2^{i}C_u = C_uV_R\sum_{i=0}^{N-1}b_i2^i - (2^N-1)C_uV_x \] the charge at the internal plate of integrator \[ Q_{intg} = V_x C_p + (V_x - V_o)2^NC_u \] and we know \(-V_x A = V_o\) and \(Q_{DAC,btm} = Q_{intg}\) \[ C_uV_R\sum_{i=0}^{N-1}b_i2^i - (2^N-1)C_uV_x = V_x C_p + (V_x - V_o)2^NC_u \] i.e. \[ C_uV_R\sum_{i=0}^{N-1}b_i2^i = (2^N-1)C_uV_x + V_x C_p + (V_x - V_o)2^NC_u \] therefore \[ -V_o = \frac{2^N C_u}{\frac{(2^{N+1}-1)C_u+C_p}{A}+2^NC_u}\sum_{i=0}^{N-1}b_i\left(2^i\frac{V_R}{2^N}\right)\approx \sum_{i=0}^{N-1}b_i\left(2^i\frac{V_R}{2^N}\right) \]


Midscale (MSB Transition) often is the largest DNL error

image-20241215090447383

\(C_4\) and \(C_1+C_2+C_3\) are independent (can't cancel out) and their variance is two largest (\(16\sigma_u^2\), \(15\sigma_u^2\), ), the total standard deviation is \(\sqrt{16\sigma_u^2+15\sigma_u^2}=\sqrt{31}\sigma_u\)

reference

Aaron Buchwald, ISSCC2010 T1: "Specifying & Testing ADCs" [https://www.nishanchettri.com/isscc-slides/2010%20ISSCC/Tutorials/T1.pdf]

John P. Keane, ISSCC2020, T5: "Fundamentals of Time-Interleaved ADCs" [https://www.nishanchettri.com/isscc-slides/2020%20ISSCC/TUTORIALS/T5Visuals.pdf]

Yun Chiu, ISSCC2023 T3: "Fundamentals of Data Converters" [https://www.nishanchettri.com/isscc-slides/2023%20ISSCC/TUTORIALS/T3.pdf]

โ€”๏ผŒ "Design and Calibration Techniques for SAR and Pipeline ADCs"

Ahmed M. A. Ali 2016, "High Speed Data Converters" [pdf]

Aaron Buchwald, ISSCC 2008 T2 Pipelined A/D Converters:The Basics [pdf]

Yohan Frans, CICC2019 ES3-3- "ADC-based Wireline Transceivers" [pdf]

Samuel Palermo, ISSCC 2018 T10: ADC-Based Serial Links: Design and Analysis [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T10/T10Visuals.pdf]


M. Gu, Y. Tao, Y. Zhong, L. Jie and N. Sun, "Timing-Skew Calibration Techniques in Time-Interleaved ADCs," in IEEE Open Journal of the Solid-State Circuits Society [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804623]

everynanocounts. Memos on FFT With Windowing. URL: https://a2d2ic.wordpress.com/2018/02/01/memos-on-fft-with-windowing/

How to choose FFT depth for ADC performance analysis (SINAD, ENOB). URL:https://dsp.stackexchange.com/a/38201

Computation of Effective Number of Bits, Signal to Noise Ratio, & Signal to Noise & Distortion Ratio Using FFT. URL:https://cdn.teledynelecroy.com/files/appnotes/computation_of_effective_no_bits.pdf

Kester, Walt. (2009). Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor. URL:https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf

T. C. Hofner: Dynamic ADC testing part I. Defining and testing dynamic ADC parameters, Microwaves & RF, 2000, vol. 39, no. 11, pp. 75-84,162

T. C. Hofner: Dynamic ADC testing part 2. Measuring and evaluating dynamic line parameters, Microwaves & RF, 2000, vol. 39, no. 13, pp. 78-94

AN9675: A Tutorial in Coherent and Windowed Sampling with A/D Converters https://www.renesas.com/us/en/document/apn/an9675-tutorial-coherent-and-windowed-sampling-ad-converters

APPLICATION NOTE 3190: Coherent Sampling Calculator (CSC) https://www.stg-maximintegrated.com/en/design/technical-documents/app-notes/3/3190.html

Coherent Sampling (Very Brief and Simple) https://www.dsprelated.com/thread/469/coherent-sampling-very-brief-and-simple

Signal Chain Basics #160: Making sense of coherent and noncoherent sampling in data-converter testing https://www.planetanalog.com/signal-chain-basics-160-making-sense-of-coherent-and-noncoherent-sampling-in-data-converter-testing/

Signal Chain Basics #104: Understanding noise in ADCs https://www.planetanalog.com/signal-chain-basics-part-104-understanding-noise-in-adcs/

Signal Chain Basics #101: ENOB Degradation Analysis Over Frequency Due to Jitter https://www.planetanalog.com/signal-chain-basics-part-101-enob-degradation-analysis-over-frequency-due-to-jitter/

Clock jitter analyzed in the time domain, Part 1, Texas Instruments Analog Applications Journal (slyt379), Aug 2010 https://www.ti.com/lit/an/slyt379/slyt379.pdf

Clock jitter analyzed in the time domain, Part 2 https://www.ti.com/lit/slyt389

Measurement of Total Harmonic Distortion and Its Related Parameters using Multi-Instrument [pdf]

Application Note AN-4: Understanding Data Converters' Frequency Domain Specifications [pdf]

Belleman, J. (2008). From analog to digital. 10.5170/CERN-2008-003.131. [pdf]

HandWiki. Coherent sampling [link]

Luis Chioye, TI. Leverage coherent sampling and FFT windows when evaluating SAR ADCs (Part 1) [link]

Coherent Sampling vs. Window Sampling | Analog Devices https://www.analog.com/en/technical-articles/coherent-sampling-vs-window-sampling.html

Understanding Effective Number of Bits https://robustcircuitdesign.com/signal-chain-explorer/understanding-effective-number-of-bits/

ADC Input Noise: The Good, The Bad, and The Ugly. Is No Noise Good Noise? [https://www.analog.com/en/resources/analog-dialogue/articles/adc-input-noise.html]

Walt Kester, Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care [https://www.analog.com/media/en/training-seminars/tutorials/MT-001.pdf]

Dan Boschen, "How to choose FFT depth for ADC performance analysis (SINAD, ENOB)", [https://dsp.stackexchange.com/a/38201]

B. Razavi, "A Tale of Two ADCs - Pipelined Versus SAR" IEEE Solid-State Circuits Magazine, Volume. 7, Issue. 30, pp. 38-46, Summer 2015 [https://www.seas.ucla.edu/brweb/papers/Journals/BRSummer15ADC.pdf))]

replica biasing

TODO ๐Ÿ“…

current mirror with source follower

icurrent_sf.drawio

source follower alleviate gate leakage impact on reference current

Curvature compensation

image-20240903234720200

Tutorials | 08012023 | 1.2.1 Bandgap Voltage Regular |, [https://youtu.be/dz067SOX0XQ?si=PlYczw9UdneAX6Na]

Subthreshold Conduction

By square-law, the Eq \(g_m = \sqrt{2\mu C_{ox}\frac{W}{L}I_D}\), it is possible to obtain a higer transconductance by increasing \(W\) while maintaining \(I_D\) constant. However, if \(W\) increases while \(I_D\) remains constant, then \(V_{GS} \to V_{TH}\) and device enters the subthreshold region. \[ I_D = I_0\exp \frac{V_{GS}}{\xi V_T} \]

where \(I_0\) is proportional to \(W/L\), \(\xi \gt 1\) is a nonideality factor, and \(V_T = kT/q\)

As a result, the transconductance in subthreshold region is \[ g_m = \frac{I_D}{\xi V_T} \]

which is \(g_m \propto I_D\)

image-20240627230726326

image-20240627230744044

PTAT with subthreshold MOS

MOS working in the weak inversion region ("subthreshold conduction") have the similar characteristics to BJTs and diodes, since the effect of diffusion current becomes more significant than that of drift current

image-20240803193343915

image-20240803195500321

image-20240803200129592

Hongprasit, Saweth, Worawat Sa-ngiamvibool and Apinan Aurasopon. "Design of Bandgap Core and Startup Circuits for All CMOS Bandgap Voltage Reference." Przeglฤ…d Elektrotechniczny (2012): 277-280.

VBE

  • temperature coefficient of \(V_{BE}\) itself depends on the temperature,

  • temperature coefficient of the \(V_{BE}\) at a given temperature T depends on the magnitude of \(V_{BE}\) itself

\(\frac{kT}{q}\) is approximately 26mV, at room temperature 300K

In advanced node, N4P, \(V_{BE}\) is about -1.45mV/K

constant-gm

aka. Beta-multiplier reference

image-20240803155734754

\(I_\text{out}\) is PTAT in case temperature coefficient of \(R_s\) is less than that of \(\mu_n\)


image-20240803201548623

Body effect of M2

image-20240803201803449

image-20240803202015668

image-20240803201941683


image-20231213235846243

Boris Murmann, Systematic Design of Analog Circuits Using Pre-Computed Lookup Tables

S. Pavan, "Systematic Development of CMOS Fixed-Transconductance Bias Circuits," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 5, pp. 2394-2397, May 2022

S. Pavan, "A Fixed Transconductance Bias Circuit for CMOS Analog Integrated Circuits", IEEE International Symposium on Circuits and Systems, ISCAS 2004, Vancouver , May 2004

Why MOS in saturation ?

\(g_m\), \(g_\text{ds}\) at fixed \(V_\text{GS}\)

image-20231125224714658


\(g_{ds}\) is constant in saturation region

in triode region \[ g_{ds} = \mu_nC_{ox}\frac{W}{L}(V_{GS}-V_{TH}-V_{DS}) \]

Interestingly, \(g_m\) in the saturation region is equal to the inverse of \(R_\text{on}\) in the deep triode region.

gds_vgs.drawio

image-20240727140918647

\(g_m\), \(g_\text{ds}\) at fixed \(I_d\), \(V_G\)

In triode region \[ I_D = \frac{1}{2}\mu_nC_{ox}\frac{W}{L}[2(V_{GS}-V_{TH})V_{DS}-V_{DS}^2] \] where \(I_D\) and \(V_G\) is fixed

Then \(V_S\) can be expressed with \(V_D\), that is \[ V_S = V_{GT} - \sqrt{(V_{GT}-V_D)^2+V_{dsat}^2} \] where \(V_{GT}=V_G-V_{TH}\), \(V_{dsat}\) is \(V_{DS}\) saturation voltage \[ g_m = \mu_nC_{ox}\frac{W}{L}\left(V_D-V_{GT}+\sqrt{(V_{GT}-V_D)^2+V_{dsat}^2}\right) \] Then \[ \frac{\partial g_m}{\partial V_D} \propto 1 - \frac{V_{GT}-V_D}{\sqrt{(V_{GT}-V_D)^2+V_{dsat}^2}} \gt 0 \]

That is, \(g_m \propto V_D\)โ€‹


\[\begin{align} g_{ds} &= \mu_nC_{ox}\frac{W}{L}(V_{GS}-V_{TH}-V_{DS}) \\ &= \mu_nC_{ox}\frac{W}{L}(V_{GT}-V_{D}) \end{align}\]

That is, \(g_{ds} \propto -V_D\)

image-20240727171005401

Both gain and speed degrade once entering triode region, though Id is constant

Cascode MOS

The low threshold voltage of cascode MOS don't help decrease the minimum output voltage

cascode_vth.drawio

Channel-length modulation

โ—ย There it not channel-length modulation in the triode region

image-20240727095651984

\[\begin{align} I_D &=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{GS}-V_{TH})^2(1+\frac{\Delta L}{L}) \\ I_D &=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{GS}-V_{TH})^2(1+\lambda V_{DS}) \\ I_D &=\frac{1}{2}\mu_nC_{ox}\frac{W}{L}(V_{GS}-V_{TH})^2(1+\frac{V_{DS}}{V_A}) \end{align}\]

where \(\frac{\Delta L}{L}=\lambda V_{DS}\) and \(V_A=\frac{1}{\lambda}\)

\(\lambda\) is channel length modulation parameter

\(V_A\), i.e. Early voltage is equal to inverse of channel length modulation parameter

The output resistance \(r_o\)

\[\begin{align} r_o &= \frac{\partial V_{DS}}{\partial I_D} \\ &= \frac{1}{\partial I_D/\partial V_{DS}} \\ &= \frac{1}{\lambda I_D} \\ &= \frac{V_A}{I_D} \end{align}\]

Due to \(\lambda \propto 1/L\), i.e. \(V_A \propto L\) \[ r_o \propto \frac{L}{I_D} \] image-20220930001909262

image-20220930002003924

image-20220930002157365

The output resistance is almost doubled using Stacked FET in saturation region

\(V_t\) and mobility \(\mu_{n,p}\) are sensitive to temperature

  • \(V_t\) decreases by 2-mV for every 1\(^oC\) rise in temperature
  • mobility \(\mu_{n,p}\) decreases with temperature

Overall, increase in temperature results in lower drain currents

current mirror mismatch

The current mismatch consists of two components.

  • The first depends on threshold voltage mismatch and increases as the overdrive \((V_{GS} โˆ’ V_t)\) is reduced.
  • The second is geometry dependent and contributes a fractional current mismatch that is independent of bias point.

\[ \Delta I_D = g_m\cdot \Delta V_{TH}+I_D\cdot \frac{\Delta(W/L)}{W/L} \]

where mismatches in \(\mu_nC_{ox}\) are neglected

\[\begin{align} \Delta V_{TH} &= \frac{A_{VTH}}{\sqrt{WL}} \\ \frac{\Delta(W/L)}{W/L} &= \frac{A_{WL}}{\sqrt{WL}} \end{align}\]

summary:

Size \(g_m\) \(\Delta V_{TH}\) \(\frac{\Delta(W/L)}{W/L}\) mismatch (%) simu (%)
W, L 1 1 1 \(I_{\Delta_{V_{TH}}}+I_{\Delta_{WL}}\) 3.44
W, 2L \(1/\sqrt{2}\) \(1/\sqrt{2}\) \(1/\sqrt{2}\) \(I_{\Delta_{V_{TH}}}/2+I_{\Delta_{WL}}/\sqrt{2}\) 1.98
2W, L \(\sqrt{2}\) \(1/\sqrt{2}\) \(1/\sqrt{2}\) \(I_{\Delta_{V_{TH}}}+I_{\Delta_{WL}}/\sqrt{2}\) 2.93
We get \(I_{\Delta_{V_{TH}}}\simeq 1.71\%\) and \(I_{\Delta_{WL}} \simeq 1.73\%\)

image-20221003001056211

image-20221002215942456

Biasing current source and global variation Monte Carlo

image-20221020225334767

image-20221020225502503

iwl: biased by mirror

iwl_ideal: biased by vdc source, whose value is typical corner


For local variation, constant voltage bias (vb_const in schematic) help reduce variation from \(\sqrt{2}\Delta V_{th}\) to \(\Delta V_{th}\)

For global variation, all device have same variation, mirror help reduce variation by sharing same \(V_{gs}\)

  1. global variation + local variation (All MC)

image-20221020225615633

  1. local variation (Mismatch MC)

image-20221020225701218

  1. global variation (Process MC)

image-20221020232515420

We had better bias mos gate with mirror rather than the vdc source while simulating sub-block.

This is real situation due to current source are always biased by mirror and vdc biasing don't give the right result in global variation Monte Carlo simulation (542.8n is too pessimistic, 13.07p is right result)

Small gain theorem

Dr. Degang Chen, EE 501: CMOS Analog Integrated Circuit Design [https://class.ece.iastate.edu/djchen/ee501/2020/References.ppt]

image-20231202102259692

For any given constant values of u and v, the constant values of variables that solve the the feed back relationship are called the operating points, or equilibrium points.

Operating points can be either stable or unstable.

An operating point is unstable if any or some small perturbation near it causes divergence away from that operating point.

If the loop gain evaluated at an operating point is less than one, that operating point is stable.

This is a sufficient condition

image-20231202105749888

image-20231202105621385

With \(m_{1\to 2} = 1\) \[ \text{Loop Gain} \simeq \frac{V_{BN}-V_{T2}}{V_{BN}-V_{T2} + V_R} \tag{$LG_0$} \] Assuming all MOS in strong inv operation, \(I\), \(V_{BN}\) and \(V_R\) is obtain \[\begin{align} I &= \frac{2\beta _1 + 2\beta _2 - 4\sqrt{\beta _1 \beta _2}}{R^2\beta _1 \beta _2} \\ V_{BN} &= V_{T2} + \frac{2}{R\beta _2}(1- \sqrt{\frac{\beta _2}{\beta _1}}) \\ IR &= \frac{2}{R}\left( \frac{1}{\sqrt{\beta_2}} - \frac{1}{\sqrt{\beta_1}} \right) \end{align}\]

Substitute \(V_{BN}\) and \(V_R\) of \(LG_0\) \[\begin{align} \text{Loop Gain} & \simeq \frac{1-\sqrt{\frac{\beta_2}{\beta_1}}}{\frac{\beta_2}{\beta_1} - 3\sqrt{\frac{\beta_2}{\beta_1}}+2} \\ &= \frac{1}{2-\sqrt{\frac{\beta_2}{\beta_1}}} \tag{$LG_1$} \end{align}\]

Alternative approach for Loop Gain

using derivation of large signal

image-20231202132310478

image-20231202134138319


โ—โ—โ— R should not be on the other side

image-20231202104505264

Self-Biasing Cascode

image-20231212153054247


cascode_selfbias.drawio


v2i.drawio

cap network

pi_Cap.drawio

\[\begin{align} (V_a-V_{a0})C_0 + (\overline{V_a - V_b} - \overline{V_{a0} - V_{b0}})C_1 &= \Delta Q_a \\ (V_b-V_{b0})C_0 + (\overline{V_b - V_a} - \overline{V_{b0} - V_{a0}})C_1 &= \Delta Q_b \end{align}\]

therefore we obtain \[\begin{align} V_a + V_b &= \frac{\Delta Q_a + \Delta Q_b}{C_0} + V_{a0} + V_{b0} \\ V_a - V_b &= \frac{\Delta Q_a - \Delta Q_b}{C_0+2C_1} + V_{a0} - V_{b0} \end{align}\] Then \[\begin{align} V_a &= \frac{\Delta Q_a(C_0+C_1)+\Delta Q_b C_1}{C_0(C_0+2C_1)} + V_{a0} \\ V_b &= \frac{\Delta Q_aC_1+\Delta Q_b (C_0+C_1)}{C_0(C_0+2C_1)} + V_{b0} \end{align}\]

rearrange the above equation \[\begin{align} V_a &= \frac{\Delta Q_a}{C_0} + \frac{\Delta Q_b-\Delta Q_a}{C_0(\frac{C_0}{C_1}+2)} + V_{a0} \\ V_b &= \frac{\Delta Q_b}{C_0} + \frac{\Delta Q_a-\Delta Q_b}{C_0(\frac{C_0}{C_1}+2)} + V_{b0} \end{align}\]

The difference between \(V_a\) and \(V_b\) \[ V_a - V_b = \frac{I_a-I_b}{C_0+2C_1}t + V_{a0} - V_{b0} \]

\(C_1\) save total capacitor area while obtaining same \(V_a - V_b\) due to \(\Delta I_{a,b}\) corresponding to \(C_0\)


at autozero phase \[\begin{align} I_{a0} &= \frac{1}{2}\mu C_{OX}\frac{W}{L}(V_{a0} - V_{TH})^2 \\ I_{Rb} &= \frac{1}{2}\mu C_{OX}\frac{W}{L}(V_{b0} - V_{TH})^2 \end{align}\]

then \[ \Delta I_0 = \frac{1}{2}(V_{a0} - V_{b0})(g_{m,a0}+g_{m,b0}) \] where \(g_{m,a0}+g_{m,b0} = \mu C_{OX}\frac{W}{L}(V_{a0}+V_{b0} - 2V_{TH})\)

at comparison phase \[\begin{align} I_{a1} &= \frac{1}{2}\mu C_{OX}\frac{W}{L}(V_{a1} - V_{TH})^2 \\ I_{b1} &= \frac{1}{2}\mu C_{OX}\frac{W}{L}(V_{b1} - V_{TH})^2 \end{align}\]

then \[ \Delta I_1 = \frac{1}{2}(V_{a1} - V_{b1})(g_{m,a1}+g_{m,b1}) \] That is, \(g_{m,a1}+g_{m,b1} = \mu C_{OX}\frac{W}{L}(V_{a1}+V_{b1} - 2V_{TH})\)

To minimize the difference between \(\Delta I_1\) and \(\Delta I_0\), the drift of both differential and common mode between \(V_a\) and \(V_b\) shall be alleviated

reference

B. Razavi, "The Design of a Low-Voltage Bandgap Reference [The Analog Mind]," in IEEE Solid-State Circuits Magazine, vol. 13, no. 3, pp. 6-16, Summer 2021, doi: 10.1109/MSSC.2021.3088963

Autozeroing

offset is sampled and then subtracted from the input

Measure the offset somehow and then subtract it from the input signal

low gain comparator

image-20241023224809158

Residual Noise of Auto-zeroing

image-20240826212343905


image-20240826213958740

pnosie Noise Type: timeaverage

image-20240826214306376

Chopping

offset is modulated away from the signal band and then filtered out

Modulate the offset away from DC and then filter it out

Good: Magically reduces offset, 1/f noise, drift

Bad: But creates switching spikes, chopper ripple and other artifacts โ€ฆ

Chopping in the Frequency Domain

Square-wave Modulation

definition of convolution \(y(t) = x(t)*h(t)= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\)

for real signal \(H(j\omega)^*=H(-j\omega)\)โ€‹

image-20240903222441433

\[ H(j\hat{\omega})*H(j\hat{\omega}) = \int_{-\infty}^{\infty}H(j\omega)H(j(\hat{\omega}-\omega))d\omega \]

sq_mod.drawio


The Fourier Series of squarewave \(x(t)\) with amplitudes \(\pm 1\), period \(T_0\)

\[ C_n = \left\{ \begin{array}{cl} 0 &\space \ n=0 \\ 0 &\space \ n=\text{even} \\ |\frac{2}{n\pi}| &\space n=\pm 1,\pm 5,\pm9, ... \\ -|\frac{2}{n\pi}| &\space n=\pm 3,\pm 7,\pm11, ... \end{array} \right. \]

The Fourier transform of \(s(t)=x(t)x(t)\), and we know \[\begin{align} S(j2n\omega_0) &= \frac{1}{2\pi}\int X(j(2n\omega_0 -\omega))X(j\omega) d\omega\\ &= \frac{1}{2\pi}\int X(j(\omega-2n\omega_0))X(j\omega) d\omega \end{align}\]

Therefore \(n=0\) \[ S(j0) = \frac{1}{2\pi} (2\pi)^2\cdot \frac{4}{\pi ^2}2\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2} \delta(\omega) = 2\pi \delta(\omega) \]

if \(n=1\)

\[\begin{align} S(j2\omega_0) &= \frac{1}{2\pi} (2\pi)^2\cdot \frac{4}{\pi ^2}\left(1 - 2\sum_{n=0}^{+\infty}\frac{1}{(2n+1)(2n+3)} \right) \\ &= \frac{1}{2\pi} (2\pi)^2\cdot \frac{4}{\pi ^2}\left(1 - 2\sum_{n=0}^{+\infty}\frac{1}{2}\left[\frac{1}{2n+1}- \frac{1}{2n+3}\right] \right) \\ &= 0 \end{align}\]

image-20241013125713945

\(n=2\) \[\begin{align} \sum &= -\frac{2}{3} + 2\left(\frac{1}{1\times 5}+ \frac{1}{3\times 7}+ \frac{1}{5\times 9} + \frac{1}{7\times 11}+...\right) \\ &= -\frac{2}{3} + 2\cdot \frac{1}{4}\left(\frac{1}{1}-\frac{1}{5}+ \frac{1}{3}- \frac{1}{7}+ \frac{1}{5} - \frac{1}{9} +\frac{1}{7}-\frac{1}{11}+...\right) \\ &= -\frac{2}{3} + 2\cdot \frac{1}{4}\frac{4}{3} = 0 \end{align}\]

That is, the input signal remains the same after chopping or squarewave up/down modulation

EXAMPLE 2.7 in R. E. Ziemer and W. H. Tranter, Principles of Communications, 7th ed., Wiley, 2013 [pdf]

Prove that \(\pi^2/8 = 1 + 1/3^2 + 1/5^2 + 1/7^2 + \cdots\) [https://math.stackexchange.com/a/2348996]

Bandwidth & Gain Accuracy

image-20240903225224732

  • lower effective gain: DC level at the output of the amplifiers is a bit less than what it should be

  • chopping artifacts at the even harmonics: frequency of output is \(2f_{ch}\)

Below we justify \(A_\text{eff} = A(1-4\tau/T_\text{ch})\) \[\begin{align} V_o(t) &= A + (V_0-A)e^{-t/\tau} \\ V_o(T/2) &= -V_0 \end{align}\]

then \[ V_0 = -A\frac{1-e^{-T/2\tau}}{1+e^{-T/2\tau}} \] Then DC level is \[ A_\text{eff} = \frac{1}{T/2}\int_0^{T/2} V_o(t)dt = A\left(1-\frac{4\tau}{T}\cdot \frac{1-e^{-T/2\tau}}{1+e^{-T/2\tau}}\right)\approx A\left(1-\frac{4\tau}{T}\right) \]

where assuming \(\tau \ll T\)

REF. [https://raytroop.github.io/2023/01/01/insight/#rc-charge-and-discharge]


chopping_OTA_limitedBW.drawio

Residual Offset of Chopping

image-20240903222425730

assume input spikes can be expressed as \[ V_\text{spike}(t) = V_o e^{-\frac{t}{\tau}} \]

Then, residual offset is

\[\begin{align} \overline{V_\text{os}} &= \frac{2\int_0^{T_{ch}/2}V_\text{spike}(t)dt}{T_{ch}} \\ &= 2f_{ch}V_o\int_0^{T_{ch}/2} e^{-\frac{t}{\tau}}dt\\ &= 2f_{ch}V_o\tau\int_0^{T_{ch}/2\tau} e^{-\frac{t}{\tau}}d\frac{t}{\tau} \\ &\approx 2f_{ch}V_o\tau \end{align}\]โ€‹

Ripple Cancellation after Chopping

On-chip analog filter is not good enough due to limited cutoff frequency

TODO ๐Ÿ“…

Dynamic Element Matching (DEM)

TODO ๐Ÿ“…

image-20241112214430191

Galton, Ian. (2010). Why dynamic-element-matching DACs work. Circuits and Systems II: Express Briefs, IEEE Transactions on. 57. 69 - 74. 10.1109/TCSII.2010.2042131. [https://sci-hub.se/10.1109/TCSII.2010.2042131]

KHIEM NGUYEN. Analog Devices Inc, "Practical Dynamic Element Matching Techniques for 3-level Unit Elements" [https://picture.iczhiku.com/resource/eetop/shihEDaaoJjFdCVc.pdf]

reference

C. C. Enz and G. C. Temes, "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization," in Proceedings of the IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996, doi: 10.1109/5.542410. [http://www2.ing.unipi.it/~a008309/mat_stud/MIXED/archive/2019/Articles/Offset_canc_Enz_Temes_96.pdf]

Kofi Makinwa. Precision Analog Circuit Design: Coping with Variability, [https://youtu.be/nA_DZtRqrTQ?si=6uyOpJhdnYm3iG9d] [https://youtu.be/uwRpP20Lprc?si=SGPta86jRCdECSob]

Chung-chun Chen, Why Design Challenge in Chopping Offset & Flicker Noise? [https://youtu.be/ydjca2KrXgc?si=2raCIB99vXriMPsq]

โ€”, Why Needs A Low Ripple after Chopping Amplifier for A Very Low DC Offset & Flicker Noise? [https://youtu.be/y7TzJtHE7IA?si=kUeP_ESofVxp3IT_]

Qinwen Fan, Evolution of precision amplifiers

Kofi Makinwa, ISSCC 2007 Dynamic-Offset Cancellation Techniques in CMOS [https://picture.iczhiku.com/resource/eetop/sYkywlkpwIQEKcxb.pdf]

Axel Thomsen, Silicon Laboratories ISSCC2012Visuals-T8: "Managing Offset and Flicker Noise" [slides,transcript]

0%