Z. Guo et al., "A 112.5Gb/s ADC-DSP-Based PAM-4 Long-Reach Transceiver with >50dB Channel Loss in 5nm FinFET," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022

image-20250806224145281

8way-interleaving-Marvell-ISSCC2022.drawio

[https://sci-hub.st/10.1109/ISSCC42614.2022.9731650]


P. Liu et al., "A 128Gb/s ADC/DAC Based PAM-4 Transceiver with >45dB Reach in 3nm FinFET," 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2025

image-20250808220954208

image-20250808221134749

RX-Clocking-Marvell-VLSI2025.drawio


ISSCC.2024 7.3 A 224Gbs 3pJb 40dB Insertion Loss Transceiver in 3nm FinFET CMOS

[7.3 A 224Gbs 3pJb 40dB Insertion Loss Transceiver in 3nm FinFET CMOS https://www.bilibili.com/video/BV18hYCe7E45/?share_source=copy_web&vd_source=5a095c2d604a5d4392ea78fa2bbc7249]


ISSCC.2018 6.4 A Fully Adaptive 19-to-56Gb/s PAM-4 Wireline Transceiver with a Configurable ADC in 16nm FinFET

[https://sci-hub.st/10.1109/ISSCC.2018.8310207]


M. S. Jalali, A. Sheikholeslami, M. Kibune and H. Tamura, "A Reference-Less Single-Loop Half-Rate Binary CDR," in IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2037-2047, Sept. 2015 [https://www.eecg.utoronto.ca/~ali/papers/jssc2015-09.pdf]


Pisati, et.al., "Sub-250mW 1-to-56Gb/s Continuous-Range PAM-4 42.5dB IL ADC/DAC- Based Transceiver in 7nm FinFET," 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019 [https://sci-hub.se/10.1109/ISSCC.2019.8662428]

LC Tank

image-20251010004537960

image-20251011002306877

Definitions of Q

image-20251012100732881

Assuming RLC oscillator waveform is \(V_0\sin\omega_0 t\) and \(\omega_0 = \frac{1}{\sqrt{LC}}\) is resonance frequency. suppose the current through \(R\) is cancelled out by additional \(-R\)

Energy stored \[ E_t = \frac{1}{2}LI_0^2 = \frac{1}{2}L(C\omega_0V_0)^2=\frac{1}{2}LC^2\omega_0^2 V_0^2 = \frac{1}{2}CV_0^2 \] Energy Dissipated per Cycle \[ E_d = \frac{V_0^2}{2R}\frac{2\pi}{\omega_0} \] For \(Q_4\) \[ Q_4 = 2\pi\frac{E_s}{E_d} = R\omega_0C = \frac{R}{\omega_0L} \]

image-20251012100816733

For \(Q_3\), suppose RLC tank is driven by \(V_o\cos \omega t\) voltage source, then

Peak Magnetic Energy \[ E_{pL} = \frac{1}{2}LI_0^2 = \frac{1}{2}L\left(\frac{V_0}{L\omega}\right)^2 \] Peak Electric Energy \[ E_{pC} = \frac{1}{2}CV_0^2 \] with Energy Lost per Cycle \(E_d = \frac{V_0^2}{2R}\frac{2\pi}{\omega_0}\), we have \[ Q_3 = \frac{E_{pL} - E_{pC}}{E_d} = \left(\frac{1}{L\omega^2}-C\right)R\omega=\frac{R}{L\omega}\left(1 - \frac{\omega^2}{\omega^2_{SR}}\right) \]

image-20251012100931217


Makarov, Sergey & Ludwig, Reinhold & Bitar, Joyce. (2016). Practical Electrical Engineering. 10.1007/978-3-319-21173-2. [pdf]

TODO πŸ“…

Capacitor Bank

B. Sadhu and R. Harjani, "Capacitor bank design for wide tuning range LC VCOs: 850MHz-7.1GHz (157%)," Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 2010 [https://sci-hub.st/10.1109/ISCAS.2010.5537040]

TODO πŸ“…

Non ideal capacitor & inductor

Tank Circuits/Impedances [https://stanford.edu/class/ee133/handouts/lecturenotes/lecture5_tank.pdf]

Resonant Circuits [https://web.ece.ucsb.edu/~long/ece145b/Resonators.pdf]

Series & Parallel Impedance Parameters and Equivalent Circuits [https://assets.testequity.com/te1/Documents/pdf/series-parallel-impedance-parameters-an.pdf]

ES Lecture 35: Non ideal capacitor, Capacitor Q and series RC to parallel RC conversion [https://youtu.be/CJ_2U5pEB4o?si=4j4CWsLSapeu-hBo]

Capacitor

image-20231224163730529


image-20251009211423154

image-20251009211708604

\[ Q_s = \frac{X_s}{R_s} = X_p\frac{Q_p^2}{Q_p^2+1}\cdot \frac{Q_p^2+1}{R_p} =\frac{Q_p^2}{R_p/X_p}=Q_p \]

So long as \(Q_s\gg 1\) \[\begin{align} R_p &\approx Q_s^2R_s \\ C_p &\approx C_s \end{align}\]


image-20251011224853381

image-20240119001309410

Inductor

image-20231224163740411

So long as \(Q_s\gg 1\) \[\begin{align} R_p &\approx Q_s^2R_s \\ L_p &\approx L_s \end{align}\]

Tail filter

D. Murphy, H. Darabi and H. Wu, "Implicit Common-Mode Resonance in LC Oscillators," in IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 812-821, March 2017, [https://sci-hub.st/10.1109/JSSC.2016.2642207]

M. Shahmohammadi, M. Babaie and R. B. Staszewski, "A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016 [pdf]

M. Babaie, M. Shahmohammadi, R. B. Staszewski, (2019) "RF CMOS Oscillators for Modern Wireless Applications" River Publishers [https://www.riverpublishers.com/pdf/ebook/RP_E9788793609488.pdf]

TODO πŸ“…

image-20250808205658082


P. Liu et al., "A 128Gb/s ADC/DAC Based PAM-4 Transceiver with >45dB Reach in 3nm FinFET," 2025 Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2025

E. Hegazi, H. Sjoland and A. Abidi, "A filtering technique to lower oscillator phase noise," 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177), San Francisco, CA, USA, 2001 [paper, slides]

β€”, "A filtering technique to lower LC oscillator phase noise," in IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001 [https://people.engr.tamu.edu/spalermo/ecen620/filtering_tech_lc_osc_hegazi_jssc_2001.pdf]

β€”, "25.3 A VCO with implicit common-mode resonance," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2015 [https://sci-hub.st/10.1109/ISSCC.2015.7063116]

Lecture 16: VCO Phase Noise [https://people.engr.tamu.edu/spalermo/ecen620/lecture16_ee620_vco_pn.pdf]

reference

P. Andreani and A. Bevilacqua, "Harmonic Oscillators in CMOSβ€”A Tutorial Overview," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 2-17, 2021 [pdf]

A. A. Abidi and D. Murphy, "How to Design a Differential CMOS LC Oscillator," in IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 45-59, 2025 [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10818782]

Pietro Andreani. ISSCC 2011 T1: Integrated LC oscillators [slides,transcript]

β€”. ISSCC 2017 F2: Integrated Harmonic Oscillators

β€”. SSCS Distinguished Lecture: RF Harmonic Oscillators Integrated in Silicon Technologies [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-Toronto.pdf]

β€”. ESSCIRC 2019 Tutorials: RF Harmonic Oscillators Integrated in Silicon Technologies [https://youtu.be/k1I9nP9eEHE?si=fns9mf3aHjMJobPH]

β€”. "Harmonic Oscillators in CMOSβ€”A Tutorial Overview," in IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 2-17, 2021 [pdf]

C. Samori, "Tutorial: Understanding Phase Noise in LC VCOs," 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2016

β€”, "Understanding Phase Noise in LC VCOs: A Key Problem in RF Integrated Circuits," in IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 81-91, Fall 2016 [https://sci-hub.se/10.1109/MSSC.2016.2573979]

β€”, Phase Noise in LC Oscillators: From Basic Concepts to Advanced Topologies [https://www.ieeetoronto.ca/wp-content/uploads/2020/06/DL-VCO-short.pdf]

Jun Yin. ISSCC 2025 T10: mm-Wave Oscillator Design


Razavi, Behzad. RF Microelectronics. 2nd ed. Prentice Hall, 2012. [pdf]

spread spectrum clock generation (SSCG) β€” an advanced clock generation solution for electromagnetic interference (EMI)

image-20250913195157852

image-20250913192850807

image-20250913192820120


SSC modulation profile

[https://www.synopsys.com/blogs/chip-design/understanding-pcie-spread-spectrum-clocking.html]

The most common modulation techniques are down-spread and center-spread:

  • Down-spread: Carrier is modulated to lower than nominal frequency by specified percentage, and not higher

  • Center-spread: Carrier is modulated both higher and lower than nominal frequency by specified percentage

image-20250913194151764


Steve Glaser, NVidia Corporation. Clocking Mode Terminology-2018-03-01. Workgroup: PCI Express - Protocol

image-20251011213209060

SSCG Architectures

K. -H. Cheng, C. -L. Hung, C. -H. Chang, Y. -L. Lo, W. -B. Yang and J. -W. Miaw, "A Spread-Spectrum Clock Generator Using Fractional-N PLL Controlled Delta-Sigma Modulator for Serial-ATA III," 2008 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Bratislava, Slovakia, 2008 [https://sci-hub.se/10.1109/DDECS.2008.4538758]

image-20250903230209570


Due to \(f= K_{vco}V_{ctrl}\), its derivate to \(t\) is \[ \frac{df}{dt} = K_{vco}\frac{dV_{ctrl}}{dt} \]

For chargepump PLL, \(dV_{ctrl} = \frac{\phi_e I_{cp}}{2\pi C}dt\), that is \[ \frac{df}{dt} = K_{vco} \frac{\phi_e I_{cp}}{2\pi C} \]

Refclk Clocking Architectures

PCI Express Base Specification Revision 3.0

Jeff Morriss, Intel Gerry Talbot, AMD. PCI-SIG Devcon 2006. Jitter Budgeting for Clock Architecture

Verification of SRIS/SRNS Clocking [https://www.esaindia.com/emailer/download/sria-srns-white-paper-final-v3.pdf]

Common Reference Clock (CC)

Common Refclk Rx architectures are characterized by the Tx and Rx sharing the same Refclk source

Most of the SSC jitter sourced by the Refclk is propagated equally through Tx and Rx PLLs, and so intrinsically tracks LF jitter

The amount of jitter appearing at the CDR is then defined by the difference function between the Tx and Rx PLLs multiplied by the CDR highpass characteristic

image-20250719172803394 \[ H(s)= H_1(s)e^{-sT} - \left[H_1(s)e^{-sT}(1-H_3(s)) + H_2(s)H_3(s) \right] = [H_1(s)e^{-sT} -H_2(s)]H_3(s) \] where \(H_3(s)\) is similar to \(NTF_{VCO}\), \(1-H_3(s)\) is similar to \(NTF_{REF}\)

image-20250719181032685


image-20250814011504270

Data Clocked Refclk Rx Architecture

A data clocked Rx architecture is characterized by requiring the receiver's CDR to track the entirety of the low frequency jitter, including SSC

image-20250719183101724

Separate Reference Clocks with SSC (SRIS)

TITLE: Separate Refclk Independent SSC Architecture (SRIS) DATE: Updated 10 January 2013 AFFECTED DOCUMENT: PCI Express Base Spec. Rev. 3.0 SPONSOR: Intel, HP, AMD

image-20250719183242222 \[\begin{align} X_{LATCH}(s) &= X_1(s)H_1(s) - \left[X_1(s)H_1(s)(1-H_3(s)) + X_2(s)H_2(s)H_3(s) \right] \\ & = \left[X_1(s)H_1(s) -X_2(s)H_2(s)\right]H_3(s) \end{align}\] where \(H_3(s)\) is similar to \(NTF_{VCO}\), \(1-H_3(s)\) is similar to \(NTF_{REF}\)

image-20250719182447193

image-20250719182517511

image-20250719182123550

image-20250719181221513


image-20250719152821655


image-20250814011411755

Separate Reference Clocks with No SSC (SRNS)

image-20250814011354803

SSC on digital CDR

Gerry Talbot, "Impact of SSC on CDR" , April 12th, 2012, PCI Express EWG

image-20250927094630403

ssc-cdr.drawio

n 0 1 2 3 ...
\(A_0\) \(0\) \(k_0\cdot \Delta\) \(k_0\cdot 2\Delta\) \(k_0\cdot 3\Delta\)
\(A_1\) \(0\) \(k_1k_0\cdot \Delta\) \(k_1k_0\cdot 3\Delta\) \(k_1k_0\cdot 6\Delta\)

\[\begin{align} f[n] &= \frac{A_1[n]-A_1[n-1]}{T} = \frac{k_1\cdot A_0[n]}{T} \\ \Delta f [n] & = \frac{f[n] -f[n-1]}{T} = \frac{k_0k_1\cdot \Delta}{T^2} \end{align}\]

the polyfit of \(f[n]\) is consistent with \(\Delta f [n]\)

image-20250927172529324

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import matplotlib.pyplot as plt
import numpy as np


f0 = 1
fa = f0/16
fs = 32*f0

Mc = 1000
t = np.arange(0, 1/f0*Mc, 1/fs)
phi_raw = 2*np.pi*f0*t
y = np.sin(phi_raw)

plt.figure(figsize=(24,12))
plt.subplot(3, 1, 1)
plt.plot(t, y); plt.title(r'$\sin(\omega_0 t)$', fontsize='xx-large')

k0 = 0.25
k1 = 0.36

A0 = [0]
A1 = [0]
N = int(Mc*fa/f0)
delta = 0.1
dlsb = delta * 2*np.pi

f_deriv_formula = k0*k1*delta*fa**2
print(f'freq derivation by formula = {f_deriv_formula:.3e}')

for i in range(N):
A1.append(A1[-1] + k1*A0[-1])
A0.append(A0[-1] + k0*dlsb)


phi_A1 = np.ones((len(A1), int(fs/fa)))
A1_arr = np.array(A1).reshape((len(A1), 1))
phi_A1 = phi_A1 * A1_arr
phi_A1 = phi_A1.flatten()

t_phi = np.arange(phi_A1.shape[0])*1/fs

plt.subplot(3, 1, 2)
plt.plot(t_phi, phi_A1); plt.title(r'$\Delta \Phi(t)$', fontsize='xx-large')

Ntot = min(t.shape[0], t_phi.shape[0])
t_tot = t_phi[:Ntot]
phi_tot = phi_raw[:Ntot] + phi_A1[:Ntot]
y_tot = np.sin(phi_tot)

phi_tot_deriv1 = (phi_tot[1:] - phi_tot[:-1])*fs/2/np.pi
phi_tot_deriv2 = (phi_tot_deriv1[1:] - phi_tot_deriv1[:-1])*fs

f_deriv_polyfit, _ = np.polyfit(np.arange(phi_tot_deriv1.shape[0])*1/fs, phi_tot_deriv1, 1) # array([3.51305094e-05, 9.99455375e-01])
print(f'freq derivation by polyfit = {f_deriv_polyfit:.3e}')

plt.subplot(3, 1, 3)
plt.plot(t_tot, y_tot); plt.xlabel(r'$t$', fontsize=24); plt.title(r'$\sin(\omega_0 t+\Delta \Phi(t))$', fontsize='xx-large')
plt.show()

y_raw_export = np.zeros((t.shape[0], 2))
y_raw_export[:,0] = t
y_raw_export[:,1] = y

y_tot_export = np.zeros((t.shape[0], 2))
y_tot_export[:,0] = t_tot
y_tot_export[:,1] = y_tot

np.savetxt('y_raw.csv', y_raw_export, delimiter=',')
np.savetxt('y_tot.csv', y_tot_export, delimiter=',')

# freq derivation by formula = 3.516e-05
# freq derivation by polyfit = 3.513e-05

reference

Jason Sachs. Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals [link]

Jan Meel, Spread Spectrum (SS) β€” introduction, De Nayer Instituut, Sint-Katelijne-Waver, Belgium, 1999.

Raymond L. Pickholtz, Donald L. Schilling, Laurence B. Milstein, Theory of Spread-Spectrum Communications β€” A Tutorial, IEEE Transactions on Communications, vol. 30, no. 5, pp. 855-884, May 1982.

Kadeem Samuel. Application Note Clocking for PCIe Applications [https://www.ti.com/lit/an/snaa386/snaa386.pdf?ts=1756864837383]

K. -H. Cheng, C. -L. Hung, C. -H. Chang, Y. -L. Lo, W. -B. Yang and J. -W. Miaw, "A Spread-Spectrum Clock Generator Using Fractional-N PLL Controlled Delta-Sigma Modulator for Serial-ATA III," 2008 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Bratislava, Slovakia, 2008 [https://sci-hub.se/10.1109/DDECS.2008.4538758]


Rhee, W. (2020). Phase-locked frequency generation and clocking : architectures and circuits for modern wireless and wireline systems. The Institution of Engineering and Technology

Single-Pole LPF Algorithms

Neil Robertson, Model a Sigma-Delta DAC Plus RC Filter [https://www.dsprelated.com/showarticle/1642.php]

Jason Sachs, Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter [https://www.embeddedrelated.com/showarticle/779.php]

β€”. Return of the Delta-Sigma Modulators, Part 1: Modulation [https://www.dsprelated.com/showarticle/1517/return-of-the-delta-sigma-modulators-part-1-modulation]

  • Derivatives Approximation (\(H_p(s)=\frac{1}{s\tau +1}\))

    \[\begin{align} H_p(z)&=\frac{\frac{T_s}{T_s+\tau}}{1+(\frac{T_s}{T_s+\tau}-1)z^{-1}}\tag{EQ-0}\\ H_p(z)&=\frac{\frac{T_s}{\tau}}{1+(\frac{T_s}{\tau}-1)z^{-1}}\tag{EQ-1} \end{align}\]

  • Matched z-Transform (Root Matching) \[ H_p(z)=\frac{1-e^{-T_s/\tau}}{1-e^{-T_s/\tau}z^{-1}}\tag{EQ-2} \] EQ-2 is connected with EQ-1 by \(1 - e^{-\Delta t/\tau} \approx \frac{\Delta t}{\tau}\)

image-20250907163030510

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal


dt=0.002; tau=0.05

T=1
t = np.arange(0,T+1e-5,dt)
x = 1-np.abs(4*t-1)
x[4*t>2] = 0.95; x[t>0.75] = 0.02

alpha_derv = dt / (dt + tau)
alpha_derv_approx = dt / tau

yfilt_derv = scipy.signal.lfilter([alpha_derv], [1, alpha_derv - 1], x)
yfilt_derv_approx = scipy.signal.lfilter([alpha_derv_approx], [1, alpha_derv_approx - 1], x)

a1 = -np.exp(-dt/tau)
b0 = [1 + a1]
a = [1, a1]
y_filt_match = scipy.signal.lfilter(b0, a, x)

plt.figure(figsize=(20,10))
plt.plot(t, x, color='k', linewidth=3, label='x')
plt.plot(t, yfilt_derv, color='red', linewidth=3, label=r'$H_p(z)=\frac{\frac{T_s}{T_s+\tau}}{1+(\frac{T_s}{T_s+\tau}-1)z^{-1}}$')
plt.plot(t, yfilt_derv_approx, color='green', marker='D', linestyle='dashed',markersize=4, linewidth=3, label=r'$H_p(z)=\frac{\frac{T_s}{\tau}}{1+(\frac{T_s}{\tau}-1)z^{-1}}$')
plt.plot(t, y_filt_match, color='m', marker='x', linestyle='dashed',markersize=4, linewidth=3, label=r'$H_p(z)=\frac{1-e^{-T_s/\tau}}{1-e^{-T_s/\tau}z^{-1}}$')

plt.legend(loc='upper right', fontsize=20)
plt.grid(which='both');plt.xlabel('Time (s)');plt.show()

Discrete-Time Integrators

Qasim Chaudhari. Discrete-Time Integrators [https://wirelesspi.com/discrete-time-integrators/]

David Johns (University of Toronto) "Oversampled Data Converters" Course (2019) [https://youtu.be/qIJ2LORYmyA?si=_pGb18rhsMUZ-lAf]

Delaying Integrator

Delay-free Integrator

image-20250615124417691

Discrete-Time Differentiator

Qasim Chaudhari. Design of a Discrete-Time Differentiator [https://wirelesspi.com/design-of-a-discrete-time-differentiator/]

TODO πŸ“…

Accumulate-and-dump (AAD) decimator

accumulating the input for \(N\) cycles and then latching the result and resetting the integrator

image-20241015222205883

It adds up \(N\) succeeding input samples at rate \(1/T\) and delivers their sum in a single sample at the output. Therefore, the process comprises a filter (in the accumulation) and a down-sampler (in the dump)

Moving Average and CIC Filters

An Intuitive Look at Moving Average and CIC Filters [web, code]

A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters [https://www.dsprelated.com/showarticle/1337.php]

TODO πŸ“…

Cascaded Integrator-Comb (CIC) filter

Let’s focus on decimation: if we decimate by a factor 4, we simply retain one output sample out of every 4 input samples.

In the example below, the downsampler at the right drops those 3 samples out of 4, and the output rate, \(y^\prime(n)\), is one fourth of the input rate \(x(n)\):

moving_average_filters-decimation_trivial \[\begin{align} Y(z) &= X(z)\frac{1-z^{-4}}{1-z^{-1}} \\ Y^\prime(\xi) &= \frac{1}{4}Y(\xi^{1/4}) = \frac{1}{4}X(\xi^{1/4})\frac{1-\xi^{-1}}{1-\xi^{-1/4}} \end{align}\]

with \(z=e^{j\Omega/f_s}\) and \(\xi =z^4\), we have \[ Y^\prime(z) = \frac{1}{4}X(z)\frac{1-z^{-4}}{1-z^{-1}} \]

But if we're going to be throwing away 75% of the calculated values, can't we just move the downsampler from the end of the pipeline to somewhere in the middle? Right between the integrator stage and the comb stage? That answer is yes, but to keep the math working, we also need to divide the number of delay elements in the comb stage by the decimation rate:

moving_average_filters-decimation_smart

\[\begin{align} A(z) &= X(z)\frac{1}{1-z^{-1}} \\ A^\prime(\xi) &= \frac{1}{4}A(\xi^{1/4}) = \frac{1}{4}X(\xi^{1/4})\frac{1}{1-\xi^{-1/4}} \\ Y^\prime(\xi) &= A^\prime(\xi) (1-\xi^{-1}) = \frac{1}{4}X(\xi^{1/4})\frac{1-\xi^{-1}}{1-\xi^{-1/4}} \end{align}\]

with \(z=e^{j\Omega/f_s}\) and \(\xi =z^4\), we have \[ Y^\prime(z) = \frac{1}{4}X(z)\frac{1-z^{-4}}{1-z^{-1}} \]


And we can do this just the same with cascaded sections (without downsampler or updampler) where integrators and combs have been grouped

  • for decimation, the integrators come first and the combs second with the downsampler in between
  • For interpolation, the reverse is true
    • the incoming sample rate is fraction of the outgoing sample rate, the combs must come first and the interpolators second

moving_average_filters-integrator_comb_decimated

moving_average_filters-comb_integrator_interpolated

Tom Verbeure. An Intuitive Look at Moving Average and CIC Filters [https://tomverbeure.github.io/2020/09/30/Moving-Average-and-CIC-Filters.html]

β€”. Half-Band Filters, a Workhorse of Decimation Filters [https://tomverbeure.github.io/2020/12/15/Half-Band-Filters-A-Workhorse-of-Decimation-Filters.html]

β€”. Design of a Multi-Stage PDM to PCM Decimation Pipeline [https://tomverbeure.github.io/2020/12/20/Design-of-a-Multi-Stage-PDM-to-PCM-Decimation-Pipeline.html]

Arash Loloee, Ph.D. Exploring Decimation Filters [https://www.highfrequencyelectronics.com/Archives/Nov13/1311_HFE_decimationFilters.pdf]

Rick Lyons. A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters [https://www.dsprelated.com/showarticle/1337.php]

reference

Jabbour, Chadi, etc.. "Digitally enhanced mixed signal systems." IEEE International Symposium on Circuits and Systems (ISCAS). 2019.

Sen M. Kuo. Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications, 3rd Edition. John Wiley & Sons 2013

Taylor, Fred. Digital filters: principles and applications with MATLAB. John Wiley & Sons, 2011

Kuo, Sen-Maw. (2013) Real-Time Digital Signal Processing: Implementations and Applications 3rd [pdf]

D. Markovic and R. W. Brodersen, DSP Architecture Design Essentials, Springer, 2012.


Bevan Baas, EEC281 VLSI Digital Signal Processing, [https://www.ece.ucdavis.edu/~bbaas/281/]

Mark Horowitz. EE371: Advanced VLSI Circuit Design Spring 2006-2007 [https://web.stanford.edu/class/archive/ee/ee371/ee371.1066/]

謝秉璇. 2019 η©ι«”ι›»θ·―θ¨­θ¨ˆε°Žθ«– [link]

Tinoosh Mohsenin. CMPE 691: Digital Signal Processing Hardware Implementation [https://userpages.cs.umbc.edu/tinoosh/cmpe691/]

Keshab K. Parhi [http://www.ece.umn.edu/users/parhi/]


Qasim Chaudhari. FIR vs IIR Filters – A Practical Comparison [https://wirelesspi.com/fir-vs-iir-filters-a-practical-comparison/]

β€”. Finite Impulse Response (FIR) Filters [https://wirelesspi.com/finite-impulse-response-fir-filters/]

β€”. Why FIR Filters have Linear Phase [https://wirelesspi.com/why-fir-filters-have-linear-phase/]

β€”. Moving Average Filter [https://wirelesspi.com/moving-average-filter/]

β€”. Cascaded Integrator Comb (CIC) Filters – A Staircase of DSP. [https://wirelesspi.com/cascaded-integrator-comb-cic-filters-a-staircase-of-dsp/]


Jason Sachs. Understanding and Preventing Overflow (I Had Too Much to Add Last Night) [https://www.embeddedrelated.com/showarticle/532.php]

β€”. Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine [https://www.embeddedrelated.com/showarticle/1015.php]

β€”. How to Build a Fixed-Point PI Controller That Just Works: Part I [https://www.embeddedrelated.com/showarticle/121.php]

β€”. How to Build a Fixed-Point PI Controller That Just Works: Part II [https://www.embeddedrelated.com/showarticle/123.php]

PI vs. PLL based CDR

image-20250816121744921

PCI Express Jitter Modeling Revision 1.0RD July 14, 2004

Phase Interpolator (PI)

!!! Clock Edges

And for a phase interpolator, you need those reference clocks to be completely the opposite. Ideally they would be triangular shaped

image-20240821203756602

four input clocks given by the cyan, black, magenta, red

John T. Stonick, ISSCC 2011 tutorial. "DPLL Based Clock and Data Recovery" [https://www.nishanchettri.com/isscc-slides/2011%20ISSCC/TUTORIALS/ISSCC2011Visuals-T5.pdf]

kink problem

image-20240919223032380

B. Razavi, "The Design of a Phase Interpolator [The Analog Mind]," IEEE Solid-State Circuits Magazine, Volume. 15, Issue. 4, pp. 6-10, Fall 2023.(https://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_4_2023.pdf)

Input/Output amplitude

A constant Output amplitude is desired because the swing-dependent delay characteristic of the CML-to-CMOS (C2C) circuit results in AM–PM distortion which eventually manifests as phase nonlinearity

Current-Mode Phase Interpolator

Voltage-Mode Phase Interpolator

Integrating-Mode Phase Interpolator

reference

A. K. Mishra, Y. Li, P. Agarwal and S. Shekhar, "Improving Linearity in CMOS Phase Interpolators," in IEEE Journal of Solid-State Circuits, vol. 58, no. 6, pp. 1623-1635, June 2023 [pdf]

Cortiula A, Menin D, Bandiziol A, Driussi F, Palestri P. Modeling of Phase-Interpolator-Based Clock and Data Recovery for High-Speed PAM-4 Serial Interfaces. Electronics. 2025; [https://www.mdpi.com/2079-9292/14/10/1979]

G. Souliotis, A. Tsimpos and S. Vlassis, "Phase Interpolator-Based Clock and Data Recovery With Jitter Optimization," in IEEE Open Journal of Circuits and Systems, vol. 4, pp. 203-217, 2023 [https://ieeexplore.ieee.org/document/10184121]

Metastability is an undesirable non-equilibrium electronic state that can persist for a long period of time

image-20250814202050937


image-20250814200158666

image-20250814185129279

image-20250814191408558

Poisson stochastic process

image-20250814190822871


image-20250814201827266

Synchronizer effect – latency uncertainty

image-20250814202542548

simulation of DFF

image-20250815012602436

The typical flip-flops comprise master and slave latches and decoupling inverters.

In metastability, the voltage levels of nodes A and B of the master latch are roughly midway between logic 1 (VDD) and 0 (GND)

master latch enter metastability

In fact, one popular definition says that if the output of a flip-flop changes later than the nominal clock-to-Q propagation delay, then the flip-flop must have been metastable


sweep \(\Delta t_{D \to \space \text{CK}}\)

image-20250815181257083


transient noise analysis @ \(\Delta t_{D \to \space \text{CK}} = -3.444525p\)

image-20250815190341687

zoom out

image-20250815190431960


image-20250815011210280

Noise Seedβ€”Seed for the random number generator (used by the simulator to vary the noise sources internally). Specifying the same seed allows you to reproduce a previous experiment. The default value is 1.

reference

Yvain Thonnart, CEA-LIST. ISSCC2021 T8: On-Chip Interconnects: Basic Concepts, Designs and Future Opportunities [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T8.pdf]

R. Ginosar, "Metastability and Synchronizers: A Tutorial," in IEEE Design & Test of Computers, vol. 28, no. 5, pp. 23-35, Sept.-Oct. 2011 [https://webee.technion.ac.il/~ran/papers/Metastability-and-Synchronizers.IEEEDToct2011.pdf]

Amr Adel Mohammady. Clock Domain Crossing [linkedin]

Steve Golson. Synchronization and Metastability [https://trilobyte.com/pdf/golson_snug14.pdf]

Kinniment, D. J. Synchronization and arbitration in digital systems. John Wiley & Sons Ltd (2007).

Synchronizers And Data FlipFlops are Different [pdf]

S. Beer, R. Ginosar, M. Priel, R. Dobkin and A. Kolodny, "The Devolution of Synchronizers," 2010 IEEE Symposium on Asynchronous Circuits and Systems, Grenoble, France, 2010 [pdf]

θ΅΅ε―ζž— klin, Metastability [https://picture.iczhiku.com/resource/eetop/SHKSFADwZerLPBXN.pdf]

Asad Abidi. ISSCC 2023: Circuit Insights "The CMOS Latch" [https://youtu.be/sVe3VUTNb4Q&t=681]

Matt Venn. Interactive flip flop simulation [https://github.com/mattvenn/flipflop_demo]

image-20250706104500363


Jitter Performance Limitations

image-20250706110637804

Aliasing of baud-rate sampling

The most significant impairments are considered to be the sensitivity to sampling phase, and the effect of aliasing out of band signal and noise into the baseband

image-20250706103107037

image-20250706103231832

Tao Gui (Huawei), etc.. IEEE 802.3dj May Interim meeting San Antonio, Texas May 15, 2013: "Feasibility Study on Baud-Rate Sampling and Equalization (BRSE) for 800G-LR1" [https://www.ieee802.org/3/dj/public/23_05/gui_3dj_01a_2305.pdf]

D. S. Millar, D. Lavery, R. Maher, B. C. Thomsen, P. Bayvel and S. J. Savory, "A baud-rate sampled coherent transceiver with digital pulse shaping and interpolation,"in OFC 2013 [https://www.merl.com/publications/docs/TR2013-010.pdf]


image-20250706111818147

Tahmoureszadeh, Tina. Master's Theses (2009 - ): Analog Front-end Design for 2x Blind ADC-based Receivers [http://hdl.handle.net/1807/29988]

image-20250706113229251

Shafik, Ayman Osama Amin Mohamed. "Equalization Architectures for High Speed ADC-Based Serial I/O Receivers." PhD diss., 2016. [https://core.ac.uk/download/79652690.pdf]

reference

Yohan Frans, CICC2019 ES3-3- "ADC-based Wireline Transceivers" [pdf]

Samuel Palermo, ISSCC 2018 T10: ADC-Based Serial Links: Design and Analysis [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T10/T10Visuals.pdf]

Jhwan Kim, CICC 2022, ES4-4: Transmitter Design for High-speed Serial Data Communications

Friedel Gerfers, ISSCC2021 T6: Basics of DAC-based Wireline Transmitters [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T6.pdf]

Tony Chan Carusone, Alphawave Semi. VLSI2025 SC2: Connectivity Technologies to Accelerate AI


Tony Pialis, Alphawave Semi. How DSP is Killing the Analog in SerDes [https://youtu.be/OY2Dn4EDPiA?si=q2Qy_avTIxJjDdOf]

Tony Chan Carusone, Alphawave Semi. High Speed Communications Part 3 – Equalization & MLSD [https://youtu.be/KqwZ23vNqYg?si=pqMFWVVUOrAVhkeU]

β€”. High Speed Communications Part 9 – Anatomy of a Modern SerDes [https://youtu.be/tlc68UTn6iQ?si=ZkqAy3INlA3Vr8Y7]

β€”. High Speed Communications Part 10 – 224Gbps Link Impairments [https://youtu.be/m-Msp_2WGAg?si=n5lgrxiz24K7x66a]

β€”. High Speed Communications Part 11 – SerDes DSP Interactions [https://youtu.be/YIAwLskuVPc?si=1HWB0yA2u2jiixNZ]

ADC ENOB

Dan Boschen, GRCon25: Quantifying Signal Quality: Practical Tools for High-Fidelity Waveform Analysis

[linkedin GRCon25]

img

decimation filter

[https://web.engr.oregonstate.edu/~temes/ece627/Lecture_Notes/First_Order_DS_ADC_scan1.pdf]

[https://web.engr.oregonstate.edu/~temes/ece627/Lecture_Notes/First_Order_DS_ADC_scan2.pdf]

The combination of the the digital post-filter and downsampler is called the decimation filter or decimator

image-20241015220921002

\(\text{sinc}\) filter

image-20241015215159577

Suppose \(T=1\) \[ H_1(e^{j2\pi f}) = \frac{\text{sinc}(Nf)}{\text{sinc}(f)} = \frac{1}{N}\frac{\sin(\pi Nf)}{\sin(\pi f)} \] that is \(\lim_{f\to 0^+}H_1(e^{j2\pi f}) = 1\) and \(H_1 = 0\) when \(f=\frac{n}{N}, n\in \mathbb{Z}\)

image-20241015215227042

A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters [https://www.dsprelated.com/showarticle/1337.php]

image-20241015225859710

image-20241015215111430

\[ |H_1(\omega)|^2 = \left|\frac{1}{N}(1-e^{-j\omega N}) \right| = \frac{2}{N^2}(1-\cos (\omega N)) \] Total noise after \(H_1\) \[ \sigma_{q_1}^2 = 2\int_0^\pi \frac{e^2_{rms}}{2\pi}\cdot |H_1(\omega)|^2d\omega = \frac{2e^2_{rms}}{N^2} \] inband noise before \(H_1\), i.e. ideal LPF with cutoff frequency \(\frac{\pi}{N}\) \[ \sigma_{q_0}^2 = 2\int_0^{\pi/N}\frac{e_{rms}^2}{2\pi}|1-e^{-j\omega}|^2d\omega = \frac{2e_{rms}^2}{\pi}\left(\frac{\pi}{N}-\sin\frac{\pi}{N}\right) \] with Taylor series \(\sin\frac{\pi}{N}\approx \frac{\pi}{N}-\frac{1}{6}\frac{\pi^3}{N^3}\) \[ \sigma_{q_0}^2 \approx \frac{\pi^2}{3N^3}e_{rms}^2 \]

Taylor’s Series of \(\sin x\) [pdf]

image-20250913093652192


[https://analogicus.com/aic2025/2025/02/20/Lecture-6-Oversampling-and-Sigma-Delta-ADCs.html#python-oversample]

\(\text{sinc}^2\) filter

image-20241015220030204

interpolation filter

Notice that the requirements of the first stage are very demanding

image-20250617001439043

replicas suppression

The spectrum of the high resolution digital signal \(u_1\) contains the original baseband portion and its replicas located at integer multiples of \(f_{s1}\), plus a small amount of quantization noise shown as a solid line

image-20250906170436567

image-20250918220425431


Nigel Redmon [https://dsp.stackexchange.com/a/63438/59253]

Inserting zeros changes nothing except what we consider the sample rate

image-20250920072501245

image-20250920074337023


Dan Boschen [https://dsp.stackexchange.com/a/32130/59253]

image-20250920075212621


Bourdopoulos, G. I. (2003). Delta-Sigma modulatorsβ€―: modeling, design and applications. Imperial College Press. [pdf]

image-20250920080910057

DC Gain in Interpolation Filtering

[https://raytroop.github.io/2025/06/21/data-converter-in-action/#dac-zoh]

DC gain is used to compensate the ratio of sampling rate before and after upsample

image-20250701070539064

Given \[ X_e = X = \propto \frac{1}{T} = \frac{1}{L\cdot T_i} \] Then, the lowpass filter (ZOH, FOH .etc) gain shall be \(L\)


Employ definition of DTFT, \(X(e^{j\hat{\omega}}) =\sum_{n=-\infty}^{+\infty}x[n]e^{-j\hat{\omega} n}\), and set \(\hat{\omega} = 0\) \[ X(e^{j0}) = \sum_{n=-\infty}^{+\infty}x[n] \] That is, \(\sum_{n=-\infty}^{+\infty}x[n] = \sum_{n=-\infty}^{+\infty}x_e[n]\), so \[ \overline{x_e[n]} = \frac{1}{L} \overline{x[n]} \] It also indicate that dc gain of upsampling is \(1/L\)

ZOH

Zero-Order Hold (ZOH)

image-20250630235534325

dc gain = \(N\)

FOH

First-Order Hold (FOH)

image-20250630235714996

dc gain = \(N\)

reference

Neil Robertson, Model a Sigma-Delta DAC Plus RC Filter [https://www.dsprelated.com/showarticle/1642.php]

β€”, Modeling a Continuous-Time System with Matlab [https://www.dsprelated.com/showarticle/1055.php]

β€”, Modeling Anti-Alias Filters [https://www.dsprelated.com/showarticle/1418.php]

β€”, DAC Zero-Order Hold Models [https://www.dsprelated.com/showarticle/1627.php]

β€”, β€œA Simplified Matlab Function for Power Spectral Density”, DSPRelated.com, March, 2020, [https://www.dsprelated.com/showarticle/1333.php]

Arash Loloee, Ph.D. Exploring Decimation Filters [https://www.highfrequencyelectronics.com/Archives/Nov13/1311_HFE_decimationFilters.pdf]


Venkatesh Srinivasan, ISSCC 2019 T5: Noise Shaping in Data Converters

Nan Sun,IEEE CAS 2020: Break the kT/C Noise Limit [https://www.facebook.com/ieeecas/videos/break-the-ktc-noise-limit/322899188976197/]

Yun-Shiang Shu, ISSCC 2022 T3: Noise-Shaping SAR ADCs

Xiyuan Tang, CICC 2025 ES2-1: Noise-Shaping SAR ADCs - From Fundamentals to Recent Advances


Qasim Chaudhari. On Analog-to-Digital Converter (ADC), 6 dB SNR Gain per Bit, Oversampling and Undersampling [https://wirelesspi.com/on-analog-to-digital-converter-adc-6-db-snr-gain-per-bit-oversampling-and-undersampling/]


Pavan, Shanthi, Richard Schreier, and Gabor Temes. (2016) 2016. Understanding Delta-Sigma Data Converters. 2nd ed. Wiley.

image-20250612003115259


Dual Slope ADC

image-20250615153045770

image-20250615152228233

\[ V_{IN} = \frac{V_{REF}}{T}t_\text{x} = \frac{V_{REF}}{2^N}\cdot 2^{N_\text{x}} \]

Normal Mode Rejection

a high normal mode rejection ratio (NMRR) for input noise at line frequency

image-20250615160802268

  • Conversion accuracy is independent of both the capacitance and the clock frequency, because they affect both the up-slope and the down-slope by the same ratio

  • The fixed input signal integration period results in rejection of noise frequencies on the analog input that have periods that are equal to or a sub-multiple of the integration time \(T\)

    Interference signals with frequencies at integral multiples of the integration period are, theoretically, completely removed, since the average value of a sine wave of frequency (\(1/T\)) averaged over a period (\(T\)) is zero

image-20250615155921455

Linear Circuit Design Handbook, 2008 [https://www.analog.com/media/en/training-seminars/design-handbooks/Basic-Linear-Design/Chapter6.pdf]

Precision Analog Front Ends with Dual Slope ADC [https://ww1.microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/21428e.pdf]

Incremental ADC

image-20250615124340044

image-20250615162024564

image-20250615162339449

image-20250615162358247

image-20250615170209562

\[\begin{align} V &= 2^N V_\text{in} - D_\text{out}V_\text{ref} \\ D_\text{out} \frac{V_\text{ref}}{2^N} &= V_\text{in} - \frac{V}{2^N} \end{align}\]

image-20250615164436626

image-20250615192031025

feedforward structure

??? TODO πŸ“…

image-20250615165107485

image-20250615175452958


image-20250615194549768

image-20250615194825368

image-20250615195150811

reference

David Johns (University of Toronto) "Oversampled Data Converters" Course (2019) [https://youtu.be/qIJ2LORYmyA?si=_pGb18rhsMUZ-lAf]

Maurits Ortmanns , Paul Kaesser , Johannes Wagner (Dec 2025). Incremental Delta-Sigma ADCs Theory, Architectures and Design - Theory, Architectures and Design

Frequency Domain Model

f-mdl.drawio

image-20250903212048962

Skew (Timing Mismatch) Calibration

TODO πŸ“…

M. Gu, Y. Tao, Y. Zhong, L. Jie and N. Sun, "Timing-Skew Calibration Techniques in Time-Interleaved ADCs," in IEEE Open Journal of the Solid-State Circuits Society, vol. 5, pp. 1-10, 2025 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804623]

S. Chen, L. Wang, H. Zhang, R. Murugesu, D. Dunwell, A. Chan Carusone, β€œAll-Digital Calibration of Timing Mismatch Error in Time-Interleaved Analog-to-Digital Converters,” IEEE Transactions on VLSI Systems, Sept. 2017. [PDF, slides]

B. Razavi, "Problem of timing mismatch in interleaved ADCs," Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, San Jose, CA, USA, 2012 [https://www.seas.ucla.edu/brweb/papers/Conferences/BRCICC12.pdf]

resync (alignment)

TODO πŸ“…

Multi-Phase Clock Generation (MPCG)

TODO πŸ“…

image-20250611222614434

Interleaver

image-20250621094704819

Direct Interleaver

image-20250621101542418

similar to increase the resolution of the flash ADC with more parallel comparators

De-multiplexing Interleaver

image-20250621103205333

it is the front-end samplers that determine timing/bandwidth mismatch errors

Re-sampling Interleaver

image-20250621111119041

back-end re-sampling occur after the front-end, two \(\frac{KT}{C}\) contribution in total noise (De-multiplexing Interleaver only one \(\frac{KT}{C}\))

without buffer, charging distribution reduce signal and reduce SNR, but buffers give excess noise

Interleaver Model

image-20250621112657111

Interleaving Errors

image-20250621072540691

image-20250621093552545

Offset Mismatch Error

image-20250621072621033

Gain Mismatch Error

image-20250621072824275

image-20250621072944516

Timing Mismatch Error

image-20250621090407014

\(\pi/2\)-rad phase: the maximum error occurs at the zero crossing and not on the peaks (Gain Mismatch error)

Frequency-dependent: the higher frequency input signal \(f_\text{in}\), the larger error becomes

image-20250621091024424

image-20250621091047339

\(\pi/2\) phase shift \[ e^{j\pi/2} = j \] frequency-dependent \[ V^{'} \propto f \]

In time domain \[ \frac{d\sin(\omega t)}{dt} = \omega \cos(\omega t) \propto \omega \]

Bandwidth Mismatch Errors

image-20250621092214162

image-20250621093321623

Overlapping versus Non-overlapping track time

image-20250611224418950

tracking accuracy stay same, Cin (2Cs) counteract the longer tracking

Summing Interleaved Alias

image-20240929215841300

The sampling function - impulse train is \[ s(t) = \sum_{n=-\infty}^{\infty}\left[ \delta(t-n4T_s) + \delta(t-n4T_s-T_s) + \delta(t-n4T_s-2T_s) + \delta(t-n4T_s-3T_s)\right] \]

Its Fourier transform is \[\begin{align} S(f) &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left[\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 2T_s}\delta(f-k\frac{f_s}{4}) + e^{-j2\pi f\cdot 3T_s}\delta(f-k\frac{f_s}{4}) \right] \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-j2\pi\frac{f}{f_s}} + e^{-j4\pi\frac{f}{f_s}} + e^{-j6\pi\frac{f}{f_s}} \right) \delta(f-k\frac{f_s}{4}) \\ &= \frac{2\pi}{4T}\sum_{k=-\infty}^{\infty}\left(1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}} \right) \delta(f-k\frac{f_s}{4}) \end{align}\]

We define \(M[k] = 1+e^{-jk\frac{\pi}{2}} + e^{-jk\pi} + e^{-jk\frac{3\pi}{2}}\), which is periodic, i.e. \(M[k]=M[k+4]\) \[ M[k]=\left\{ \begin{array}{cl} 4 & : \ k = 4m \\ 0 & : \ k=4m+1 \\ 0 & : \ k=4m+2 \\ 0 & : \ k=4m+3 \\ \end{array} \right. \]

That is \[ S(f) = \frac{2\pi}{T}\sum_{k=-\infty}^{\infty} \delta(f-kf_s) \]

Alias has same frequency for each slice but different phase: Alias terms sum to zero if all slices match exactly

Random Chopping in TI-ADC

image-20240929215927957

\[ D_n(kT) = (G_n R(kT) V(kT) + O_n)R(kT)= C_n V(kT) + R(kT)O_n \]

reference

John P. Keane, ISSCC2020 T5: "Fundamentals of Time-Interleaved ADCs" [https://www.nishanchettri.com/isscc-slides/2020%20ISSCC/TUTORIALS/T5Visuals.pdf]

Yohan Frans, CICC2019 ES3-3- "ADC-based Wireline Transceivers" [pdf]

Samuel Palermo, ISSCC 2018 T10: ADC-Based Serial Links: Design and Analysis [https://www.nishanchettri.com/isscc-slides/2018%20ISSCC/TUTORIALS/T10/T10Visuals.pdf]

ISSCC2015 F1: High-Speed Interleaved ADCs [https://picture.iczhiku.com/resource/eetop/wykrheUfrWasiMVX.pdf]

Poulton, Ken. ISSCC2009 "Time-Interleaved ADCs, Past and Future" (slides)

β€”. CICC2010 "GHz ADCs: From Exotic to Mainstream", tutorial session, (slides)

β€”. ISSCC2015 "Interleaved ADCs Through the Ages", (slides)

Ewout Martens. ESSCIRC 2019 Tutorials: Advanced Techniques for ADCs for 5G Massive MIMO [https://youtu.be/7hYichGGU6k]

Athanasios Ramkaj. January 26, 2022, IEEE SSCS Santa Clara Valley Section Technical Talk: Design Considerations Towards Optimal High-Resolution Wide-Bandwidth Time-Interleaved ADCs [https://youtu.be/k3jY9NtfYlY?si=K9AdT9QzGxOnI5WG]


Ahmed M. A. Ali 2016, "High Speed Data Converters" [pdf]

S. Jang, J. Lee, Y. Choi, D. Kim, and G. Kim, "Recent advances in ultra-high-speed wireline receivers with ADC-DSP-based equalizers," IEEE Open Journal of the Solid-State Circuits Society (OJ-SSCS), vol. 4, pp. 290-304, Nov. 2024.

Yida Duan. Design Techniques for Ultra-High-Speed Time-Interleaved Analog-to-Digital Converters (ADCs) [http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-10.pdf]

Preview Lecture #1 - "Extreme SAR ADCs" Online Course (2024) - Prof. Chi-Hang Chan (U. of Macau) [https://youtu.be/rgMRL4QZ-wA]

0%