活塞环(Piston Ring)

image-20241124132957086

马力 vs 扭矩

image-20241116193639833

扭矩 = 力 x 力臂 (T=FL)

悬挂 (vehicle suspension)

image-20241116194036720

变速箱 (transmission)

image-20241117110054261

变速箱实现转速和扭矩的转换:低档扭矩大,转速慢; 高档扭矩小,转速慢

发动机小齿轮和变速箱大齿轮啮合处的力相同(力的作用是相互的),但是力臂不同,于是实现了扭矩转换

阿克曼转向几何 (Ackerman steering geometry)

image-20241117112328574

缸内直喷 (direct injection)

  • 歧管喷油
  • 缸内直喷
    • 省油
    • 动力更强
    • 喷油时间自由度大

image-20241119205154609

image-20241019142915175


CDR Loop Latency

image-20241102235118149

image-20241102235145417

loop latency is represented as \(e^{-sD}\) in linear model


image-20241102235736432

image-20241103000223470

image-20241103000653906

Sensitivity to Loop Latency

image-20241103142137640


image-20241103142656134

image-20241103142531277

image-20241103142938907

Enhancing Resolution with a \(\Delta \Sigma\) Modulator

Sub-Resolution Time Averaging

image-20241103160332995

\(\Delta \Sigma\) modulator effectively dithers the LSB bit between zero and one, such that you can get the effective resolution of a much higher resolution DAC in the number of bits

Decimation

image-20241020140430663

DLF's input bit-width can be reduced by decimating BBPD's output. Decimation is typically performed by realizing either majority voting (MV) or boxcar filtering.

Note that deserialization is inherent to both MV and boxcar filtering

image-20241019225016868

  • Decimation is commonly employed to alleviate the high-speed requirement. However, decimation increases loop-latency which causes excessive dither jitter.
  • Decimation is basically, widen the data and slowing it down
  • Decimating by \(L\) means frequency register only added once every \(L\) UI, thus integral path gain reduced by \(L\) in linear model
  • proportional path gain is unchanged

intg_path_decim.drawio

CDR Linear Model

image-20220504101924272

condition:

Linear model of the CDR is used in a frequency lock condition and is approaching to achieve phase lock

Using this model, the power spectral density (PSD) of jitter in the recovered clock \(S_{out}(f)\) is \[ S_{out}(f)=|H_T(f)|^2S_{in}(f)+|H_G(f)|^2S_{VCO}(f) \] Here, we assume \(\varphi_{in}\) and \(\varphi_{VCO}\) are uncorrelated as they come from independent sources.

Jitter Transfer

\[ H_T(s) = \frac{\varphi_{out}(s)}{\varphi_{in}(s)}|_{\varphi_{vco}=0}=\frac{K_{PD}K_{VCO}R_s+\frac{K_{PD}K_{VCO}}{C}}{s^2+K_{PD}K_{VCO}R_s+\frac{K_{PD}K_{VCO}}{C}} \]

Using below notation \[\begin{align} \omega_n^2=\frac{K_{PD}K_{VCO}}{C} \\ \xi=\frac{K_{PD}K_{VCO}}{2\omega_n^2} \end{align}\]

We can rewrite transfer function as follows \[ H_T(s)=\frac{2\xi\omega_n s+\omega_n^2}{s^2+2\xi \omega_n s+\omega_n^2} \]

The jitter transfer represents a low-pass filter whose magnitude is around 1 (0 dB) for low jitter frequencies and drops at 20 dB/decade for frequencies above \(\omega_n\)

image-20220504104202197

  • the recovered clock track the low-frequency jitter of the input data
  • the recovered clock DONT track the high-frequency jitter of the input data

The recovered clock does not suffer from high-frequency jitter even though the input signal may contain high-frequency jitter, which will limit the CDR tolerance to high-frequency jitter.

Jitter Peaking in Jitter Transfer Function

The peak, slightly larger than 1 (0dB) implies that jitter will be amplified at some frequencies in the CDR, producing a jitter amplitude in the recovered clock, and thus also in the recovered data, that is slightly larger than the jitter amplitude in the input data.

This is certainly undesirable, especially in applications such as repeaters.

image-20220504110722442

Jitter Generation

If the input data to the CDR is clean with no jitter, i.e., \(\varphi_{in}=0\), the jitter of the recovered clock comes directly from the VCO jitter. The transfer function that relates the VCO jitter to the recovered clock jitter is known as jitter generation. \[ H_G(s)=\frac{\varphi_{out}}{\varphi_{VCO}}|_{\varphi_{in}=0}=\frac{s^2}{s^2+2\xi \omega_n s+\omega_n^2} \] Jitter generation is high-pass filter with two zeros, at zero frequency, and two poles identical to those of the jitter transfer function

image-20220504110737718

Jitter Tolerance

To quantify jitter tolerance, we often apply a sinusoidal jitter of a fixed frequency to the CDR input data and observe the BER of the CDR

The jitter tolerance curve DONT capture a CDR's true tolerance to random jitter. Because we are applying "sinusoidal" jitter, which is deterministic signal.

We can deal only with the jitter's amplitude and frequency instead of the PSD of the jitter thanks to deterministic sinusoidal jitter signal. \[ JTOL(f) = \left | \varphi_{in}(f) \right |_{\text{pp-max}} \quad \text{for a fixed BER} \] Where the subscript \(\text{pp-max}\) indicates the maximum peak-to-peak amplitude. We can further expand this equation as follows \[ JTOL(f)=\left| \frac{\varphi_{in}(f)}{\varphi_{e}(f)} \right| \cdot |\varphi_e(f)|_{pp-max} \] image-20220504114650749

Relative jitter, \(\varphi_e\) must be less than 1UIpp for error-free operation

In an ideal CDR, the maximum peak-to-peak amplitude of \(|\varphi_e(f)|\) is 1UI, i.e.,\(|\varphi_e(f)|_{pp-max}=1UI\)

Accordingly, jitter tolerance can be expressed in terms of the number of UIs as \[ JTOL(f)=\left| \frac{\varphi_{in}(f)}{\varphi_{e}(f)} \right|\quad \text{[UI]} \] Given the linear CDR model, we can write \[ JTOL(f)=\left| 1+\frac{K_{PD}K_{VCO}H_{LF}(f)}{j2\pi f} \right|\quad \text{[UI]} \] Expand \(H_{LF}(f)\) for the CDR, we can write \[ JTOL(f)=\left| 1-2\xi j \left(\frac{f_n}{f}\right) - \left(\frac{f_n}{f}\right)^2 \right|\quad \text{[UI]} \] image-20220504120538534

At frequencies far below and above the natural frequency, the jitter tolerance can be approximated by the following \[ JTOL(f) = \left\{ \begin{array}{cl} \left(\frac{f_n}{f}\right)^2 & : \ f\ll f_n \\ 1 & : \ f\gg f_n \end{array} \right. \]

  • the jitter tolerance at very high jitter frequencies is limited to 1UIpp
    • This is consistent with that the recovered clock does not track the high-frequency jitter, limiting the maximum peak-to-peak deviation of the data edge from its nominal position to 1UI
    • The circumstance, (b) jittery data with ideal clock
  • the jitter tolerance is increased at 40dB/decade for jitter frequencies below \(f_c\)
    • This is consistent with our obervation earlier that the recovered clock better tracks data jitter at lower jitter frequencies
    • Equivalently, the data edge and the clock edge move together in the same direction. As a result, the relative jitter between the data and the clock remains small, i.e., below 1UI peak-to-peak
    • The circumstance, (c) jittery data and jittery clock

OJTF

Concepts of JTF and OJTF

Simplified Block Diagram of a Clock-Recovery PLL pll_block_diagram

Jitter Transfer Function (JTF)

  • Input Signal Versus Recovered Clock
  • JTF, by jitter frequency, compares how much input signal jitter is transferred to the output of a clock-recovery's PLL (recovered clock)
    • Input signal jitter that is within the clock recovery PLL's loop bandwidth results in jitter that is faithfully transferred (closed-loop gain) to the clock recovery PLL's output signal. JTF in this situation is approximately 1.
    • Input signal jitter that is outside the clock recovery PLL's loop bandwidth results in decreasing jitter (open-loop gain) on the clock recovery PLL's output, because the jitter is filtered out and no longer reaches the PLL's VCO

Observed Jitter Transfer Function

  • Input Signal Versus Sampled Signal
  • OJTF compares how much input signal jitter is transferred to the output of a receiver's decision making circuit as effected by a clock recovery's PLL. As the recovered clock is the reference for detecting the input signal
    • Input signal jitter that is within the clock recovery PLL's loop bandwidth results in jitter on the recovered clock which reduces the amount of jitter that can be detected. The input signal and clock signal are closer in phase
    • Input signal jitter that is outside the clock recovery PLL's loop bandwidth results in reduced jitter on the recovered clock which increases the amount of jitter that can be detected. The input signal and clock signal are more out of phase. Jitter that is on both the input and clock signals can not detected or is reduced

JTF and OJTF for 1st Order PLLs

jsa_1st_order_graph

neuhelium-jtf-ojtf

The observed jitter is a complement to the PLL jitter transfer response OJTF=1-JTF (Phase matters!)

OTJF gives the amount of jitter which is tracked and therefore not observed at the output of the CDR as a function of the jitter rate applied to the input.

A-jtf-ojtf

Jitter Measurement

\[ J_{\text{measured}} = JTF_{\text{DUT}} \cdot OJTF_{\text{instrument}} \]

The combination of the OJTF of a jitter measurement device and the JTF of the clock generator under test gives the measured jitter as a function of frequency.

image-20220716094732273

For example, a clock generator with a type 1, 1st order PLL measured with a jitter measurement device employing a golden PLL is \[ J_{\text{measured}} = \frac{\omega_1}{s+\omega_1}\frac{s}{s+\omega_2} \]

Accurate measurement of the clock JTF requires that the OJTF cutoff of the jitter measurement be significantly below that of the clock JTF and that the measurement is compensated for the instrument's OJTF.

The overall response is a band pass filter because the clock JTF is low pass and the jitter measurement device OJTF is high pass.

The compensation for the instrument OJTF is performed by measuring the jitter of the reference clock at each jitter rate being tested and comparing the reference jitter with the jitter measured at the output of the DUT.

jtf-ojtf

The lower the cutoff frequency of the jitter measurement device the better the accuracy of the measurement will be.

The cutoff frequency is limited by several factors including the phase noise of the DUT and measurement time.

Digital Sampling Oscilloscope

How to analyze jitter:

  • TIE (Time Interval Error) track
  • histogram
  • FFT

TIE track provides a direct view of how the phase of the clock evolves over time.

histogram provides valuable information about the long term variations in the timing.

FFT allows jitter at specific rates to be measured down to the femto-second range.

Maintaining the record length at a minimum of \(1/10\) of the inverse of the PLL loop bandwidth minimizes the response error

reference

Dalt, Nicola Da and Ali Sheikholeslami. “Understanding Jitter and Phase Noise: A Circuits and Systems Perspective.” (2018).

neuhelium, 抖动、眼图和高速数字链路分析基础 URL: http://www.neuhelium.com/ueditor/net/upload/file/20200826/DSOS254A/03.pdf

Keysight JTF & OJTF Concepts, https://rfmw.em.keysight.com/DigitalPhotonics/flexdca/FlexPLL-UG/Content/Topics/Quick-Start/jtf-pll-theory.htm?TocPath=Quick%20Start%7C_____4

Complementary Transmitter and Receiver Jitter Test Methodlogy, URL: https://www.ieee802.org/3/bm/public/mar14/ghiasi_01_0314_optx.pdf

SerDesDesign.com CDR_BangBang_Model URL: https://www.serdesdesign.com/home/web_documents/models/CDR_BangBang_Model.pdf

M. Schnecker, Jitter Transfer Measurement in Clock Circuits, LeCroy Corporation, DesignCon 2009. URL: http://cdn.teledynelecroy.com/files/whitepapers/designcon2009_lecroy_jitter_transfer_measurement_in_clock_circuits.pdf

VCO model

TODO 📅

respone to vctrl focus on phase

[https://designers-guide.org/verilog-ams/functional-blocks/vco/vco.va]

ADC Spec

TODO 📅

ENOB - Not sufficient & not accurate enough

  • Based on SNDR
  • Assume unbounded Gaussian distribution

quantization noise is ~ bounded uniform distribution

Using unbounded Gaussian -> pessimistic BER prediction

AFE Nonlinearity

"total harmonic distortion" (THD) in AFE

Relative to NRZ-based systems, PAM4 transceivers require more stringent circuit linearity, equalizers which can implement multi-level inter-symbol interference (ISI) cancellation, and improved sensitivity

image-20240923204055369

Because if it compresses, it turns out you have to use a much more complicated feedback filter. As long as it behaves linearly, the feedback filter itself can remain a linear FIR

image-20240923211841053

Linearity can actually be a critical constraint in these signal paths, and you really want to stay as linear as you can all the way up until the point where you've canceled all of the ISI

image-20240923222650556

A. Roshan-Zamir, O. Elhadidy, H. -W. Yang and S. Palermo, "A Reconfigurable 16/32 Gb/s Dual-Mode NRZ/PAM4 SerDes in 65-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2430-2447, Sept. 2017 [https://people.engr.tamu.edu/spalermo/ecen689/2017_reconfigurable_16_32Gbps_NRZ_PAM4_SERDES_roshanzamir_jssc.pdf]

Hongtao Zhang, designcon2016. "PAM4 Signaling for 56G Serial Link Applications − A Tutorial"[https://www.xilinx.com/publications/events/designcon/2016/slides-pam4signalingfor56gserial-zhang-designcon.pdf]

Elad Alon, ISSCC 2014, "T6: Analog Front-End Design for Gb/s Wireline Receivers"

BER with Quantization Noise

image-20240804110522955

\[ \text{Var}(X) = E[X^2] - E[X]^2 \]

image-20240804110235178

Impulse Response or Pulse Response

image-20240807221637401

image-20240807224407213image-20240807224505987

TX FFE

TX FFE suffers from the peak power constraint, which in effect attenuates the average power of the outgoing signal - the low-frequency signal content has been attenuated down to the high-frequency level

image-20240727225120002

[https://www.signalintegrityjournal.com/articles/1228-feedforward-equalizer-location-study-for-high-speed-serial-systems]

S. Palermo, "CMOS Nanoelectronics Analog and RF VLSI Circuits," Chapter 9: High-Speed Serial I/O Design for Channel-Limited and Power-Constrained Systems, McGraw-Hill, 2011.

Eye-Opening Monitor (EOM)

An architecture that evaluates the received signal quality

data slicers, phase slicers, error slicers, scope slicers

image-20240922143125270

image-20240922144605196

Analui, Behnam & Rylyakov, Alexander & Rylov, Sergey & Meghelli, Mounir & Hajimiri, Ali. (2006). A 10-Gb/s two-dimensional eye-opening monitor in 0.13-??m standard CMOS. Solid-State Circuits, IEEE Journal of. 40. 2689 - 2699, [https://chic.caltech.edu/wp-content/uploads/2013/05/B-Analui_JSSC_10-Gbs_05.pdf]

reference

G. Balamurugan, A. Balankutty and C. -M. Hsu, "56G/112G Link Foundations Standards, Link Budgets & Models," 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2019, pp. 1-95 [https://youtu.be/OABG3u2H2J4?si=CxryBSGbxrUpZNBT]

Paul Muller Yusuf Leblebici École Polytechnique Fédérale de Lausanne (EPFL). Pattern generator model for jitter-tolerance simulation; VHDL-AMS models

Savo Bajic, ECE1392, Integrated Circuits for Digital Communications: StatOpt in Python [https://savobajic.ca/projects/academic/statopt]

Anritsu Company, "Measuring Channel Operating Margin," 2016. [https://dl.cdn-anritsu.com/en-us/test-measurement/files/Technical-Notes/White-Paper/11410-00989A.pdf]

JLSD - Julia SerDe [https://github.com/kevjzheng/JLSD]

Kiran Gunnam, Selected Topics in RF, Analog and Mixed Signal Circuits and Systems

H. Shakiba, D. Tonietto and A. Sheikholeslami, "High-Speed Wireline Links-Part I: Modeling," in IEEE Open Journal of the Solid-State Circuits Society, vol. 4, pp. 97-109, 2024 [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10608184]

H. Shakiba, D. Tonietto and A. Sheikholeslami, "High-Speed Wireline Links-Part II: Optimization and Performance Assessment," in IEEE Open Journal of the Solid-State Circuits Society, vol. 4, pp. 110-121, 2024 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579874]

G. Souliotis, A. Tsimpos and S. Vlassis, "Phase Interpolator-Based Clock and Data Recovery With Jitter Optimization," in IEEE Open Journal of Circuits and Systems, vol. 4, pp. 203-217, 2023 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10184121]

loop dynamic

Dithering Jitter in Bang-bang PLL

hunting jitter is also called as dithering jitter the time error between data clock and input data

  • proportional gain
  • loop latency

image-20240924225542342

where the proportional gain (\(K_P\)), heavily damped systems means that \(K_P \gg K_I\)

image-20240924234154476

Hanumolu, Pavan Kumar. 2006. Design Techniques for Clocking High Performance Signaling Systems. : Oregon State University. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1v53k219r]

Hae-Chang Lee, "An Estimation Approach To Clock And Data Recovery" [https://www-vlsi.stanford.edu/people/alum/pdf/0611_HaechangLee_Phase_Estimation.pdf]

R. Walker, “Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems,” in Phase-Locking in High-Performance Systems, B. Razavi, Ed. New Jersey: IEEE Press, 2003, pp. 34-45. [http://www.omnisterra.com/walker/pdfs.papers/BBPLL.pdf]

J. Kim, Design of CMOS Adaptive-Supply Serial Links, Ph.D. Thesis, Stanford University, December 2002. [https://www-vlsi.stanford.edu/people/alum/pdf/0212_Kim_______Design_Of_CMOS_AdaptiveSu.pdf]

P. K. Hanumolu, M. G. Kim, G. -y. Wei and U. -k. Moon, "A 1.6Gbps Digital Clock and Data Recovery Circuit," IEEE Custom Integrated Circuits Conference 2006, San Jose, CA, USA, 2006, pp. 603-606 [https://sci-hub.se/10.1109/CICC.2006.320829]

Da Dalt N. A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs. IEEE Transactions on Circuits and Systems I: Regular Papers. 2005;52(1):21–31. [https://sci-hub.se/10.1109/TCSI.2004.840089]

Jang S, Kim S, Chu SH, Jeong GS, Kim Y, Jeong DK. An optimum loop gain tracking all-digital PLL using autocorrelation of bang–bang phasefrequency detection. IEEE Transactions on Circuits and Systems II: Express Briefs. 2015;62(9):836–840. [https://sci-hub.se/10.1109/TCSII.2015.2435691]


ditheringjitter.drawio

image-20240925213924764

CDR Loop Latency

Denoting the CDR loop latency by \(\Delta T\) , we note that the loop transmission is multiplied by \(exp(-s\Delta T)\simeq 1-s\Delta T\).The resulting right-half-plane zero, \(f_z\) degrades the phase margin and must remain about one decade beyond the BW \[ f_z\simeq \frac{1}{2\pi \Delta T} \]

This assumption is true in practice since the bandwidth of the CDR (few mega Hertz) is much smaller than the data rate (multi giga bits/second).

Fernando , Marvell Italy."Considerations for CDR Bandwidth Proposal" [https://www.ieee802.org/3/bs/public/16_03/debernardinis_3bs_01_0316.pdf]

Loop Bandwidth

The closed-loop −3-dB bandwidth is sometimes called the “loop bandwidth”

Continuous-Time Approximation Limitations

A rule of thumb often used to ensure slow changes in the loop is to select the loop bandwidth approximately equal to one-tenth of the input frequency.

image-20240806230158367

image-20240928095850580

Gardner, F.M. (1980). Charge-Pump Phase-Lock Loops. IEEE Trans. Commun., 28, 1849-1858.

Homayoun, Aliakbar and Behzad Razavi. “On the Stability of Charge-Pump Phase-Locked Loops.” IEEE Transactions on Circuits and Systems I: Regular Papers 63 (2016): 741-750.

N. Kuznetsov, A. Matveev, M. Yuldashev and R. Yuldashev, "Nonlinear Analysis of Charge-Pump Phase-Locked Loop: The Hold-In and Pull-In Ranges," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4049-4061, Oct. 2021

Deog-Kyoon Jeong, Topics in IC Design - 2.1 Introduction to Phase-Locked Loop [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%202%20-%20Charge-Pump%20PLL%2C%20Freuqency%20Synthesizers%2C%20and%20SSCG.pdf]

Limit Cycle Oscillation

limit cycles imply self-sustained oscillators due nonlinear nature

Ouzounov, S., Hegt, H., Van Roermund, A. (2007). SUB-HARMONIC LIMIT-CYCLE SIGMA-DELTA MODULATION, APPLIED TO AD CONVERSION. In: Van Roermund, A.H., Casier, H., Steyaert, M. (eds) Analog Circuit Design. Springer, Dordrecht. [https://sci-hub.se/10.1007/1-4020-5186-7_6]

BB PD

It's ternary, because early, late and no transition

Linearing BB-PD

BB Gain is the slope of average BB output \(\mu\), versus phase offset \(\phi\), i.e. \(\frac {\partial \mu}{\partial \phi}\),

BB only produces output for a transition and this de-rates the gain. Transition density = 0.5 for random data

\[ K_{BB} = \frac{1}{2}\frac {\partial \mu}{\partial \phi} \]

where \(\mu = (1)\times \mathrm{P}(\text{late}|\phi) + (-1)\times \mathrm{P}(\text{early}|\phi)\)

bb-PDF.drawio

Both jitter and amplitude noise distribution are same, just scaled by slope

Self-Noise Term

One price we pay for BB PD versus linear PD is the self-noise term. For small phase errors BB output noise is the full magnitude of the sliced data.

BB-PD don't have any measure as to how early or how late and the way that tell loop is locked, is over a long time average, BB-PD have an equal number of earlies and lates

\[\begin{align} \sigma_{BB} &= [E(X^2) - E(X)^2] \cdot \mathrm{P}(\text{trans}) \\ &= [1 - 0]\cdot 0.5 \\ &= 0.5 \end{align}\]

John T. Stonick, ISSCC 2011 TUTORIALS T5: DPLL-Based Clock and Data Recovery

Walker, Richard. (2003). Designing Bang-Bang PLLs for Clock and Data Recovery in Serial Data Transmission Systems. [pdf]

- Clock and Data Recovery for Serial Data Communications, focusing on bang-bang CDR design methodology, ISSCC Short Course, February 2002. [slides]

Digital CDR Category

image-20241024221619909

  • DCO part is analogous so that it cannot be perfectly modeled
  • Digital-to-phase converter is well-defined phase output, thus, very good to model real situation

DCO

image-20241024224500048

image-20241024224603927

limit cycle

image-20241026230332655

Z-domain modeling

image-20241027001226490

The difference equation is \[ \phi[n] = \phi[n-1] + K_{DCO}V_C[n]\cdot T\cdot2\pi \] z-transform is \[ \frac{\Phi(z)}{V_C(z)}=\frac{2\pi K_{DCO}T}{1-z^{-1}} \]

where \(K_{DCO}\) : \(\Delta f\) (Hz/bit)

\(\Delta \Sigma\)-dithering in DCO

Quantization noise

image-20241019200102827

Here, \(\alpha_T\) is data transition density

BBPD quantization noise

DAC quantization noise

M. -J. Park and J. Kim, "Pseudo-Linear Analysis of Bang-Bang Controlled Timing Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 6, pp. 1381-1394, June 2013 [https://sci-hub.st/10.1109/TCSI.2012.2220502]

Time to Digital Converter (TDC)

Digital to Phase Converter (DPC)

IIR low pass filter

image-20241024232055792

simple approximation: \[ z = 1 + sT \] bilinear-z transform \[ z =\frac{}{} \]

image-20241024232111368

Peak-to-peak jitter in ADPLL with BBPD

image-20241025001015194

Accumulate-and-dump (AAD) decimator

accumulating the input for \(N\) cycles and then latching the result and resetting the integrator

image-20241015222205883

It adds up \(N\) succeeding input samples at rate \(1/T\) and delivers their sum in a single sample at the output. Therefore, the process comprises a filter (in the accumulation) and a down-sampler (in the dump)

Moving Average and CIC Filters

cascade-integrator-comb (CIC) decimator

TODO 📅

An Intuitive Look at Moving Average and CIC Filters [web, code]

A Beginner's Guide To Cascaded Integrator-Comb (CIC) Filters [https://www.dsprelated.com/showarticle/1337.php]

Linearized Model

TODO 📅

Tristate: \(\alpha=1\)

XOR: \(\alpha=1\)

\(\frac{1}{T}\) in Divider

image-20240928004526381

image-20240928004308700

Michael H. Perrott, PLL Design Using the PLL Design Assistant Program. [https://designers-guide.org/forum/Attachments/pll_manual.pdf]


\(\frac{1}{T}\) & \(T\) come from CT-DT & DT-CT

image-20240928203714450

H. Kang et al., "A 42.7Gb/s Optical Receiver With Digital Clock and Data Recovery in 28nm CMOS," in IEEE Access, vol. 12, pp. 109900-109911, 2024 [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10630516]

FAQ

PLL vs. CDR

PLL CDR
Clock edge periodic Data edge random
Phase & Frequency detecting possible Phase detecting possible ,
Frequency detecting impossible

PLL or FD(Frequency Detector) for frequency detecting in CDR

reference

J. Stonick. ISSCC 2011 "DPLL-Based Clock and Data Recovery" [slides,transcript]

P. Hanumolu. ISSCC 2015 "Clock and Data Recovery Architectures and Circuits" [slides]

Amir Amirkhany. ISSCC 2019 "Basics of Clock and Data Recovery Circuits"

Fulvio Spagna. INTEL, CICC2018, "Clock and Data Recovery Systems" [slides]

M. Perrott. 6.976 High Speed Communication Circuits and Systems (lecture 21). Spring 2003. Massachusetts Institute of Technology: MIT OpenCourseWare, [lec21.pdf]

Akihide Sai. ISSCC 2023, T5 "All Digital Plls From Fundamental Concepts To Future Trends" [T5.pdf]

J. L. Sonntag and J. Stonick, "A Digital Clock and Data Recovery Architecture for Multi-Gigabit/s Binary Links," in IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1867-1875, Aug. 2006 [https://sci-hub.se/10.1109/JSSC.2006.875292]

J. Sonntag and J. Stonick, "A digital clock and data recovery architecture for multi-gigabit/s binary links," Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005.. [https://sci-hub.se/10.1109/CICC.2005.1568725]


Liu, Tao, Tiejun Li, Fangxu Lv, Bin Liang, Xuqiang Zheng, Heming Wang, Miaomiao Wu, Dechao Lu, and Feng Zhao. 2021. "Analysis and Modeling of Mueller-Muller Clock and Data Recovery Circuits" Electronics 10, no. 16: 1888. https://doi.org/10.3390/electronics10161888

Gu, Youzhi & Feng, Xinjie & Chi, Runze & Chen, Yongzhen & Wu, Jiangfeng. (2022). Analysis of Mueller-Muller Clock and Data Recovery Circuits with a Linearized Model. 10.21203/rs.3.rs-1817774/v1. [https://assets-eu.researchsquare.com/files/rs-1817774/v1_covered.pdf?c=1664188179]

H. Kang et al., "A 42.7Gb/s Optical Receiver With Digital Clock and Data Recovery in 28nm CMOS," in IEEE Access, vol. 12, pp. 109900-109911, 2024 [https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10630516]

Marinaci, Stefano. "Study of a Phase Locked Loop based Clock and Data Recovery Circuit for 2.5 Gbps data-rate" [https://cds.cern.ch/record/2870334/files/CERN-THESIS-2023-147.pdf]

P. Palestri et al., "Analytical Modeling of Jitter in Bang-Bang CDR Circuits Featuring Phase Interpolation," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 7, pp. 1392-1401, July 2021 [https://sci-hub.se/10.1109/TVLSI.2021.3068450]

F. M. Gardner, "Phaselock Techniques", 3rd Edition, Wiley Interscience, Hoboken, NJ, 2005 [https://picture.iczhiku.com/resource/eetop/WyIgwGtkDSWGSxnm.pdf]

Rhee, W. (2020). Phase-locked frequency generation and clocking : architectures and circuits for modern wireless and wireline systems. The Institution of Engineering and Technology

M.H. Perrott, Y. Huang, R.T. Baird, B.W. Garlepp, D. Pastorello, E.T. King, Q. Yu, D.B. Kasha, P. Steiner, L. Zhang, J. Hein, B. Del Signore, "A 2.5 Gb/s Multi-Rate 0.25μm CMOS Clock and Data Recovery Circuit Utilizing a Hybrid Analog/Digital Loop Filter and All-Digital Referenceless Frequency Acquisition," IEEE J. Solid-State Circuits, vol. 41, Dec. 2006, pp. 2930-2944 [https://cppsim.com/Publications/JNL/perrott_jssc06.pdf]

M.H. Perrott. CICC 2009 "Tutorial on Digital Phase-Locked Loops" [https://www.cppsim.com/PLL_Lectures/digital_pll_cicc_tutorial_perrott.pdf]

-, Short Course On Phase-Locked Loops and Their Applications Day 4, PM Lecture "Examples of Leveraging Digital Techniques in PLLs" [https://www.cppsim.com/PLL_Lectures/day4_pm.pdf]

-, Short Course On Phase-Locked Loops IEEE Circuit and System Society, San Diego, CA "Digital Frequency Synthesizers" [https://www.cppsim.com/PLL_Lectures/digital_pll.pdf]


Deog-Kyoon Jeong Topics in IC(Wireline Transceiver Design) - 3.1. Introduction to All Digital PLL [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%203%20-%20ADPLL.pdf]

Deog-Kyoon Jeong Topics in IC(Wireline Transceiver Design) - 6.1 Introduction to Clock and Data Recovery [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%206%20-%20Clock%20and%20Data%20Recovery.pdf]

High-speed Serial Interface Lect. 16 – Clock and Data Recovery 3 [http://tera.yonsei.ac.kr/class/2013_1_2/lecture/Lect16_CDR-3.pdf]

PSS + PXF Method

TODO 📅

Transient Method

image-20241016211020230

image-20241016211101204

image-20241016211115630

To compare the ring oscillator and VCO the total injected charge to both should be the same

reference

Yizhe Hu, "A Simulation Technique of Impulse Sensitivity Function (ISF) Based on Periodic Transfer Function (PXF)" [https://bbs.eetop.cn/thread-869343-1-1.html]

David Dolt. ECEN 620 Network Theory - Broadband Circuit Design: "VCO ISF Simulation" [https://people.engr.tamu.edu/spalermo/ecen620/ISF_SIM.pdf]

asymmetric sideband

image-20241012001704081

The spectrum of the narrowband FM signal is very similar to that of an amplitude modulation (AM) signal but has the phase reversal for the other sideband component

Assume the modulation frequency of PM and AM are same, \(\omega_m\)

\[\begin{align} x(t) &= (1+A_m\cos{\omega_m t})\cos(\omega_0 t + P_m \sin\omega_m t) \\ &= \cos(\omega_0 t + P_m \sin\omega_m t) + A_m\cos{\omega_m t}\cos(\omega_0 t + P_m \sin\omega_m t) \\ &= X_{pm}(t) + X_{apm}(t) \end{align}\]

\(X_{pm}(t)\), PM only part \[ X_{pm}(t) = \cos\omega_0 t - \frac{P_m}{2}\cos(\omega_0 - \omega_m)t + \frac{P_m}{2}\cos(\omega_0 + \omega_m)t \] \(X_{apm}(t)\), AM & PM part \[\begin{align} X_{apm}(t) &= A_m \cos{\omega_m t} (\cos\omega_0 t-P_m\sin\omega_m t\sin\omega_0 t) \\ &= \frac{A_m}{2}[\cos(\omega_0 + \omega_m)t + \cos(\omega_0 -\omega_m)t] - \frac{A_mP_m}{2}\sin(2\omega_m t)\sin(\omega_0 t) \\ &= \frac{A_m}{2}\cos(\omega_0 + \omega_m)t + \frac{A_m}{2}\cos(\omega_0 -\omega_m)t - \frac{A_mP_m}{4}\cos(\omega_0 - 2\omega_m)t + \frac{A_mP_m}{4}\cos(\omega_0 + 2\omega_m)t \end{align}\]

That is \[\begin{align} x(t) &= \cos\omega_0 t + \frac{A_m-P_m}{2}\cos(\omega_0 - \omega_m)t + \frac{A_m+P_m}{2}\cos(\omega_0 + \omega_m)t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space - \frac{A_mP_m}{4}\cos(\omega_0 - 2\omega_m)t + \frac{A_mP_m}{4}\cos(\omega_0 + 2\omega_m)t \end{align}\]

For general case, \(x(t) = (1+A_m\cos{\omega_{am} t})\cos(\omega_0 t + P_m \sin\omega_{pm} t)\), i.e., PM is \(\omega_{pm}\), AM is \(\omega_{am}\)

\[\begin{align} x(t) &= \cos\omega_0 t - \frac{P_m}{2}\cos(\omega_0 - \omega_{pm})t + \frac{P_m}{2}\cos(\omega_0 + \omega_{pm})t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space + \frac{A_m}{2}\cos(\omega_0 - \omega_{am})t + \frac{A_m}{2}\cos(\omega_0 + \omega_{am})t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space - \frac{A_mP_m}{4}\cos(\omega_0 - \omega_{pm}-\omega_{am})t + \frac{A_mP_m}{4}\cos(\omega_0 + \omega_{pm}+\omega_{am})t \\ &\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space + \frac{A_mP_m}{4}\cos(\omega_0 + \omega_{pm}-\omega_{am})t - \frac{A_mP_m}{4}\cos(\omega_0 - \omega_{pm}+\omega_{am})t \end{align}\]

Therefore, sideband is asymmetric if \(\omega_{pm} = \omega_{am}\)

Ken Kundert, Measuring AM, PM & FM Conversion with SpectreRF [https://designers-guide.org/analysis/am-pm-conv.pdf]

Modulation of WSS process

Balu Santhanam, Probability Theory & Stochastic Process 2020: Modulation of Random Processes

modulated with a random cosine

image-20241107202647998

modulated with a deterministic cosine

image-20241107202947949


image-20241003001204803

Hayder Radha, ECE 458 Communications Systems Laboratory Spring 2008: Lecture 7 - EE 179: Introduction to Communications - Winter 2006–2007 Energy and Power Spectral Density and Autocorrelation


image-20241002231615792

image-20241002231639299

Sampling of WSS process

Balu Santhanam, Probability Theory & Stochastic Process 2020: Impulse sampling of Random Processes

DT sequence \(x[n]\)

image-20240428162643394

image-20240428162655969

image-20240907220050543


impulse train \(x_s(t)\)

image-20241106222744962

image-20241106222817998

That is \[ P_{x_s x_s} (f)= \frac{1}{T_s^2}P_{xx}(f) \] where \(x[n]\) is sampled discrete-time sequence, \(x_s(t)\) is sampled impulse train

Noise Aliasing

apply foregoing observation

Cyclostationary Noise (Modulated Noise)

[https://ece-research.unm.edu/bsanthan/ece541/cyclo.pdf]

image-20241123230025107

image-20241123230049341

image-20241123215631264

White Noise Modulation

Noisy Resistor & Clocked Switch

\[ v_t (t) = v_i(t)\cdot m_t(t) \] where \(v_i(t)\) is input white noise, whose autocorrelation is \(A\delta(\tau)\), and \(m_t(t)\) is periodically operating switch, then autocorrelation of \(v_t(t)\) \[\begin{align} R_t (t_1, t_2) &= E[v_t(t_1)\cdot v_t(t_2)] \\ &= R_i(t_1, t_2)\cdot m_t(t_1)m_t(t_2) \end{align}\]

Then \[\begin{align} R_t(t, t-\tau) &= R_i(\tau)\cdot m_t(t)m_t(t-\tau) \\ & = A\delta(\tau) \cdot m_t(t)m_t(t-\tau) \\ & = A\delta(\tau) \cdot m_t(t) \end{align}\] Because \(m_t(t)=m_t(t+T)\), \(R_t(t, t-\tau)\) is is periodic in the variable \(t\) with period \(T\)

The time-averaged ACF is denoted as \(\tilde{R_t}(\tau)\)

\[ \tilde{R}_{t}(\tau) = m\cdot A\delta(\tau) \] That is, \[ S_t(f) = m\cdot S_{A}(f) \]


image-20241118212505205

image-20241118212242823

image-20241116170450589

Colored Noise Modulation

tavg_factor.drawio \[ \tilde{R_t}(\tau) = R_i(\tau)\cdot m_{tac}(\tau) \]

where \(m_t(t)m_t(t-\tau)\) averaged on \(t\) is denoted as \(m_{tac}(\tau)\) or \(\overline{m_t(t)m_t(t-\tau)}\)

The DC value of \(m_{tac}(\tau)\) can be calculated as below

  1. for \(m\le 0.5\), the DC value of \(m_{tac}(\tau)\) \[ \frac{m\cdot mT}{T} = m^2 \]

  2. for \(m\gt 0.5\), the DC value of \(m_{tac}(\tau)\) \[ \frac{(m+2m-1)(1-m)T + (2m-1)\{mT -(1-m)T\}}{T} = m^2 \]

Therefore, time-average power spectral density and total power are scaled by \(m^2\) in fundamental frequency sideband


image-20241118213007400

image-20241118215846751

image-20241117205422217


Switched-Capacitor Track signal

image-20241118213830893

image-20241116165632847

track signal pnoise (sc)

image-20241118220145885

image-20241118215956843

zoom in first harmonic by linear step of pnoise

image-20241118220904802

decreasing the rising/falling time of clock, the harmonics still retain

equivalent circuit for pnoise (eq)

  1. thermal noise of R is modulated at first
  2. then filtered by ideal filter

image-20241118214320950

image-20241118220027598


sc vs eq

image-20241118222730383

  • sc: harmonic distortion
  • eq: no harmonic distortion

Non-Stationary Processes

Wide-Sense-Stationary Noise

Much like sinusoidal-steady-state signal analysis, steady-state noise analysis methods assume an input x(t) of infinite duration, which is a Wide-Sense Stationary (WSS) random process

Frequency-domain Analysis

image-20241122233117654

Time-domain Analysis

The output \(y(t)\) of a linear time-invariant (LTI) system \(h(t)\) \[\begin{align} R_{yy}(\tau) &= R_{xx}(\tau)*[h(\tau)*h(-\tau)] \\ &= S_{xx}(0)\delta(\tau) * [h(\tau)*h(-\tau)] \\ &= S_{xx}(0)[h(\tau)*h(-\tau)] \\ &= S_{xx}(0) \int_\alpha h(\alpha)h(\alpha-\tau)d\alpha \end{align}\]

with WSS white noise input \(x(t)\), \(R_{xx}(\tau)=S_{xx}(0)\delta(\tau)\), therefore

image-20241122232641188

Non-stationary Noise

Assuming the noise applied duration is much less than the time constant, the output voltage does not reach steady-state and WSS noise analysis does not apply

In order to determine the response of an LTI system to a step noise input, the problem is more conveniently solved in the time-domain

input signal: step ramp input

noise current: step

Time-domain Analysis

image-20241123005612107

The step noise input \(x(t) = \nu(t)u(t)\) \[ R_{xx}(t_1,t_2) = E[x(t_1)x(t_2)] = R_{\nu\nu}(t_1, t_2)u(t_1)u(t_2)=R_{\nu\nu}(t_1, t_2) \] image-20241123005644828

\[ R_{xy}(t_1, t_2) = E[x(t_1)y(t_2)] = E[x(t_1)(x(t_2)*h(t_2))] = E(x(t_1)x(t_2))*h(t_2) = R_{xx}(t_1,t_2)*h(t_2) \]

\[ R_{yy}(t_1,t_2) = E[y(t_1)y(t_2)] = E[(x(t_1)*h(t_1))y(t_2)] = E[x(t_1)y(t_2)]*h(t_1)=R_{xy}(t_1,t_2)*h(t_1) \]

image-20241123011304449

the absolute value of each time index is important for a non-stationary signal, and only the time difference was important for WSS signals

\[\begin{align} R_{yy}(t_1,t_2) &= h(t_1)*R_{\nu\nu}(t_1, t_2)*h(t_2) \\ &= h(t_1)*S_{xx}(0)\delta(t_2-t_1)*h(t_2) \\ &=S_{xx}(0) h(t_1)*(\delta(t_2-t_1)*h(t_2)) \\ &= S_{xx}(0)h(t_1)*h(t_2-t_1) \\ &= S_{xx}(0)\int_\tau h(\tau)h(t_2-t_1+\tau))d\tau \end{align}\]

That is \[ \sigma^2_y (t)= R_{yy}(t_1,t_2)|_{t_1=t_2=t}=S_{xx}(0)\int_{-\infty}^t |h(\tau)|^2d\tau \]

\(t\), the upper limit of integration is just intuitive, which lacks strict derivation

Because stable systems have impulse responses that decay to zero as time goes to infinity, the output noise variance approaches the WSS result as time approaches infinity

image-20241123074316370

Frequency-domain Analysis

Because the definition of the PSD assumes that the variance of the noise process is independent of time, the PSD of a non-stationary process is not very meaningful

image-20241123084051824

image-20241123084118787

Input Referred Noise

image-20241123094924184

Noise Voltage to Timing Jitter Conversion & noise gain

image-20241123100031499

with a step ramp input \(v_X(t) = Mtu(t)\)

The noise gain is \[ |A_N(t_i)| = A_0 (1-e^{t_i/\tau_o})u(t) \] where \(t_i\) is crossing time of ideal threshold comparator
\[\begin{align} \overline{v_n^2} &= \frac{\overline{v_{on}^2}}{|A_N|^2} \\ &= \frac{G_n}{G_m}\frac{kT}{C}\frac{1}{A_0}\frac{1+e^{-t_i/\tau_o}}{1-e^{-t_i/\tau_o}} \\ &=4kT\frac{G_n}{G_m^2}\frac{1}{4R_oC} \coth(\frac{t_i}{2\tau_o}) \\ &= 4kTR_n\frac{1}{4\tau_o} \coth(\frac{t_i}{2\tau_o}) \end{align}\]

where \(R_n = \frac{G_n}{G_m^2}\), the equivalent thermal noise resistance

image-20241123111642852

reference

Alan V Oppenheim, Ronald W. Schafer. Discrete-Time Signal Processing, 3rd edition [pdf]

R. E. Ziemer and W. H. Tranter, Principles of Communications, 7th ed., Wiley, 2013 [pdf]

John G. Proakis and Masoud Salehi, Fundamentals of communication systems 2nd ed [pdf]

Rhee, W. and Yu, Z., 2024. Phase-Locked Loops: System Perspectives and Circuit Design Aspects. John Wiley & Sons

Phillips, Joel R. and Kenneth S. Kundert. "Noise in mixers, oscillators, samplers, and logic: an introduction to cyclostationary noise." Proceedings of the IEEE 2000 Custom Integrated Circuits Conference. [pdf, slides]

Antoni, J., "Cyclostationarity by examples", Mechanical Systems and Signal Processing, vol. 23, no. 4, pp. 987–1036, 2009 [https://docente.unife.it/docenti/dleglc/a-a-2010-2011-dmsm/ciclostazionarieta.pdf]

Kundert, Ken. (2006). Simulating Switched-Capacitor Filters with SpectreRF. URL:https://designers-guide.org/analysis/sc-filters.pdf

STEADY-STATE AND CYCLO-STATIONARY RTS NOISE IN MOSFETS [https://ris.utwente.nl/ws/portalfiles/portal/6038220/thesis-Kolhatkar.pdf]

Christian-Charles Enz. "High precision CMOS micropower amplifiers" [pdf]

T. Sepke, P. Holloway, C. G. Sodini and H. -S. Lee, "Noise Analysis for Comparator-Based Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 541-553, March 2009 [https://dspace.mit.edu/bitstream/handle/1721.1/61660/Speke-2009-Noise%20Analysis%20for%20Comparator-Based%20Circuits.pdf]

Sepke, Todd. "Comparator design and analysis for comparator-based switched-capacitor circuits." (2006). [https://dspace.mit.edu/handle/1721.1/38925]

  • proportional term (P) depends on the present error
  • integral term (I) depends on past errors
  • derivative term (D) depends on anticipated future errors

PID controller makes use of linear extrapolation of the measured output

PI controller does not make use of any prediction of the future state of the system

The prediction by linear extrapolation (D) can generate large undesired control signals because measurement noise is amplified, that's why D is not used widely


reference

Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. 2018. Feedback Control of Dynamic Systems (8th Edition). Pearson.

Åström, K.J. & Murray, Richard. (2021). Feedback Systems: An Introduction for Scientists and Engineers Second Edition [https://www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-public_24Jul2020.pdf]

Yan Lu, ISSCC2021 T10: Fundamentals of Fully Integrated Voltage Regulators [https://www.nishanchettri.com/isscc-slides/2021%20ISSCC/TUTORIALS/ISSCC2021-T10.pdf]

image-20241004163356709

charge pumps are capacitive DC-DC converters. The two most common switched capacitor voltage converters are the voltage inverter and the voltage doubler circuit


image-20241014211627207


voltage doubler

image-20241019092038444

output buffer capacitor

To achieve a stable DC output voltage

Step-Wise Ramp-Up

without load

\[ V_{in} C_p + V_{out,n-1}C_o = (V_{out,n}-V_{in})C_p + V_{out,n}C_o \]

We derive a recursive equation that describes the output voltage \(V_{out,n}\) after the \(n\)th clock cycle \[ V_{out,n} = \frac{2V_{in}C_p + V_{out,n-1}C_o}{C_p + C_o} \]

Voltage Ripple & Droop

ripple_droop.drawio

\[\begin{align} (V_t - V_h)(C_p + C_o) &= \frac{I_{load}}{2f_{sw}} \\ (V_h - V_b)C_o &= \frac{I_{load}}{2f_{sw}} \end{align}\]

we obtain \[ V_t - V_b = \frac{I_{load}}{f_{sw}C_o}\left(1 - \frac{C_p}{2(C_p + C_o)}\right) \] That is, peak-to-peak ripple \[ \Delta V_{out,p2p} \approx \frac{I_{load}}{f_{sw}C_o} \space\space\space\space \text{if}\space\space C_o \gg C_p \]

Then, with aforementioned Step-Wise Ramp-Up equation, \(V_t = \frac{2V_{in}C_p + V_bC_o}{C_p + C_o}\) \[\begin{align} V_b &= 2V_{in} - \frac{I_{load}}{f_{sw}C_p}\left(1 + \frac{C_p}{2C_o}\right) \\ V_t &= 2V_{in} - \frac{I_{load}}{f_{sw}C_p}\left(1 - \frac{C_p}{2(C_p+C_o)}\right) \end{align}\]

Therefore, average output voltage \(\overline{V}_{out}\) in steady-state is \[ \overline{V}_{out} = \frac{V_t+V_b}{2}=2V_{in} - \frac{I_{load}}{f_{sw}C_p}\left(1 + \frac{C_p^2}{4C_o(C_p+C_o)}\right) \approx 2V_{in} - \frac{I_{load}}{f_{sw}C_p} \] which results in a simple expression for the output voltage droop

\[ \Delta V_{out} = \frac{I_{load}}{f_{sw}C_p} \]

The charge pump can be modeled as a voltage source with a source resistance \(R_\text{out}\). Therefore, \(\Delta V_{out}\) can be seen as the voltage drop across \(R_\text{out}\) due to the load current:

\[ R_{out} = \frac{\Delta V_{out}}{I_{load}} = \frac{1}{f_{sw}C_p} \] image-20241015072846141

capacitive charging loss

increase with switching frequency

SSL & FSL

slow-switching limit (SSL), fast-switching limit (FSL)

reference

Bernhard Wicht, "Design of Power Management Integrated Circuits". 2024 Wiley-IEEE Press

Breussegem, T. v., & Steyaert, M. (2013). CMOS integrated capacitive DC-DC converters. Springer

Zhang, Milin, Zhihua Wang, Jan van der Spiegel and Franco Maloberti. "Advanced Tutorial on Analog Circuit Design." (2023).

Anton Bakker, Tim Piessens., ISSCC2014 T9: Charge Pump and Capacitive DC-DC Converter Design

Wicht, B., ISSCC2020 T2: Analog Building Blocks of DC-DC Converters [https://www.nishanchettri.com/isscc-slides/2020%20ISSCC/TUTORIALS/T2Visuals.pdf]

Hoi Lee, ISSCC2018 T8: Fundamentals of Switched-Mode Power Converter Design [slides,transcript]

alternative view of sampling, assuming DC value is \(A\)

sampling-c2d-d2d.drawio

  • \(x_c(t)\) and \(x_s(t)\)

    \(\overline{x_c} = A\); \(\overline{x_s}=\frac{A}{T}\): therefore \(X_s(j0) = \frac{1}{T}X_c(j0)\)

  • \(x[n]\) and \(x_d[n]\)

    \(\overline{x} = A\); \(\overline{x_d}=\frac{A}{2}\): therefore \(X_d(e^{j0}) = \frac{1}{2}X(e^{j0})\)

expander

sampling-expander.drawio

  • \(x[n]\) and \(x_e[n]\)

    \(\overline{x} = A\); \(\overline{x_e}=A\): therefore \(X_e(e^{j0}) = X(e^{j0})\)

    Fourier transform of the output of the expander is a frequency-scaled version of the Fourier transform of the input


Subsampling or Downsampling

image-20241004151215993

image-20241004151308422

image-20241004151434477

  • Eqs. (4.72)

    the superposition of an infinite set of amplitude-scaled copies of \(X_c(j\Omega)\), frequency scaled through \(\omega = \Omega T_d\) and shifted by integer multiples of \(2\pi\)

  • Eq. (4.77)

    the superposition of \(M\) amplitude-scaled copies of the periodic Fourier transform \(X (e^{j\omega})\), frequency scaled by \(M\) and shifted by integer multiples of \(2\pi\)


downsampled by a factor of \(M = 2\)

image-20241004161805974


image-20241005073349726

image-20241005073534041

Upsampling or Zero Insertion

image-20241006072426572

image-20241006074425704

image-20241006075854246


image-20241006074604512

sampling identities

sampling-ID.drawio


downsampling identity

image-20241007085509889

image-20241007090624888


upsampling identity

image-20241007085527233

image-20241007090939701

Polyphase Decomposition

image-20241020122709610

image-20241020122726153

where \(e_k[n]=h[nM+k]\)


Polyphase Implementation of Decimation Filters & Interpolation Filters

Decimation system Interpolation system
image-20241020123035001 image-20241020123043829
image-20241020123027067 image-20241020123101780
sampling identity image-20241020123345371 image-20241020123355113

LPTV Implementation

TODO 📅

The interpolation filter following an up-sampler generally is time varying and cannot be represented by a simple transfer function. The equivalent filter in a zero-order hold is an exception, perhaps unique, that can be represented with a time-invariant transfer function

Dr. Deepa Kundur, Multirate Digital Signal Processing: Part I [pdf, https://www.comm.utoronto.ca/dkundur/course/discrete-time-systems/]

ZOH interpolator

The interpolation filter following an up-sampler generally is time varying and cannot be represented by a simple transfer function. The equivalent filter in a Zero-Order Hold is an exception, perhaps unique, that can be represented with a time-invariant transfer function


zoh.drawio \[ F_1(z) = X(z^{LM})\frac{1-z^{-LM}}{1-z^{-1}} \]

Split the \(1:LM\) hold process into a \(1 : L\) hold followed by a \(1 : M\) hold \[ Y(\eta)=X(\eta^{L})\frac{1-\eta^{-L}}{1-\eta^{-1}} \] then \[\begin{align} F_2(z) &= Y(z^M)\cdot\frac{1-z^{-M}}{1-z^{-1}} \\ &=X(z^{LM})\frac{1-z^{-LM}}{1-z^{-M}}\cdot \frac{1-z^{-M}}{1-z^{-1}} \\ &= X(z^{LM})\frac{1-z^{-LM}}{1-z^{-1}} \end{align}\]

That is \(F_1(z)=F_2(z)\), i.e. they are equivalent


image-20241103180315919

Random Signals & Multirate Systems

Balu Santhanam, Probability Theory & Stochastic Process 2020: Random Signals & Multirate Systems [https://ece-research.unm.edu/bsanthan/ece541/rand.pdf]

Decimation by Summing

proportional path

The loop gain of a proportional path is unchanged

phug_loop.drawio

In (a), the loop gain is \(\frac{\phi_o(z)}{\phi_e(z)}\), which is \[ LG_a(z)=\frac{\phi_o(z)}{\phi_e(z)} = \frac{1}{1-z^{-1}} \]

In (b), Accumulate-and-dump (AAD) is \(\frac{1-z^{-L}}{1-z^{-1}}\), then \(\phi_m(\eta)\) can be expressed as \[ \phi_m(\eta) = \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L} \] Hence \[\begin{align} \phi_o(\eta) &= \phi_m(\eta) \frac{1}{1-\eta^{-1}} \\ &= \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L}\cdot \frac{1}{1-\eta^{-1}} \\ &= \frac{1}{1-\eta^{-1/L}}\cdot \frac{1}{L} \end{align}\]

After zero-order hold process, we obtain \(\phi_f(z)\), which is \[\begin{align} \phi_f(z) &= \phi_o(z^L) \cdot \frac{1-z^{-L}}{1-z^{-1}} \\ &=\frac{1}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1-z^{-L}}{1-z^{-1}} \end{align}\] That is, \[ LG_b(z) = \frac{1}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1-z^{-L}}{1-z^{-1}} \]

while bandwidth is less than sampling rate (data rate), \(\frac{1}{L}\cdot \frac{1-z^{-L}}{1-z^{-1}} \approx 1\), i.e. \(LG_a(z)\approx LG_b(z)\). with

\[ \frac{1}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1-z^{-L}}{1-z^{-1}} \approx \frac{1}{1-z^{-1}} \]

integral path

integral path gain reduced by \(L\)

frug_loop.drawio

In (a), \(\phi_o(z)=\frac{1}{(1-z^{-1})^2}\), i.e. \[ LG_a(z) = \frac{1}{(1-z^{-1})^2} \]

In (b), after Accumulate-and-dump (AAD), \(\phi_(\eta)\) is \[ \phi_m(\eta) = \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L} \]

After frequency integrator and phase integrator \[\begin{align} \phi_o(\eta) &= \phi_m(\eta) \cdot \frac{1}{(1-\eta^{-1})^2} \\ &= \frac{1-\eta^{-1}}{1-\eta^{-1/L}}\cdot \frac{1}{L} \cdot \frac{1}{(1-\eta^{-1})^2} \end{align}\] Then \(\phi_f(z)\) is shown as below \[\begin{align} \phi_f(z) &= \phi_o(z^L)\cdot \frac{1-z^{-L}}{1-z^{-1}} \\ &= \frac{1-z^{-L}}{1-z^{-1}}\cdot \frac{1}{L}\cdot \frac{1}{(1-z^{-L})^2}\cdot \frac{1-z^{-L}}{1-z^{-1}} \\ &= \frac{1}{L} \cdot \frac{1}{(1-z^{-1})^2} \end{align}\]

That is, \[ LG_b(z) = \frac{1}{L} \cdot \frac{1}{(1-z^{-1})^2} = \frac{1}{L}\cdot LG_a(z) \]

Decimation by Voting

TODO 📅

J. Stonick. ISSCC 2011 "DPLL-Based Clock and Data Recovery" [slides,transcript]

Y. Xia et al., "A 10-GHz Low-Power Serial Digital Majority Voter Based on Moving Accumulative Sign Filter in a PS-/PI-Based CDR," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 12 [https://sci-hub.se/10.1109/TMTT.2020.3029188]

J. Liang, A. Sheikholeslami, "On-Chip Jitter Measurement and Mitigation Techniques for Clock and Data Recovery Circuits" [https://tspace.library.utoronto.ca/bitstream/1807/91138/3/Liang_Joshua_201706_PhD_thesis.pdf]

J. Liang, A. Sheikholeslami. ISSCC2017. "A 28Gbps Digital CDR with Adaptive Loop Gain for Optimum Jitter Tolerance" [slides,paper]

J. Liang, A. Sheikholeslami,, "Loop Gain Adaptation for Optimum Jitter Tolerance in Digital CDRs," in IEEE Journal of Solid-State Circuits [https://sci-hub.se/10.1109/JSSC.2018.2839038]

M. M. Khanghah, K. D. Sadeghipour, D. Kelly, C. Antony, P. Ossieur and P. D. Townsend, "A 7-Bit 7-GHz Multiphase Interpolator-Based DPC for CDR Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers [https://cora.ucc.ie/bitstreams/7ae5bfaa-8dd9-45a7-8276-99676b7b6078/download]

reference

Alan V Oppenheim, Ronald W. Schafer. 2010. Discrete-Time Signal Processing, 3rd edition

R. E. Crochiere and L. R. Rabiner, "Multirate Digital Signal Processing", Prentice Hall, 1983.

John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4th edition, 2007.

D. Sundararajan. 2024. Digital Signal Processing: An Introduction 2nd Edition

F. M. Gardner, "Phaselock Techniques", 3rd Edition, Wiley Interscience, Hoboken, NJ, 2005 [https://picture.iczhiku.com/resource/eetop/WyIgwGtkDSWGSxnm.pdf]

Rhee, W. (2020). Phase-locked frequency generation and clocking : architectures and circuits for modern wireless and wireline systems. The Institution of Engineering and Technology

MOS parasitic Rd&Rs, Cd&Cs

Decrease the parasitic R&C

priority: \(R_s \gt R_d\), \(C_s \gt C_d\)

XCP as Negative Impedance Converter (NIC)

The Cross-Coupled Pair (XCP) can operate as an impedance negator [a.k.a. a negative impedance converter (NIC)]

A common application is to create a negative capacitance that can cancel the positive capacitance seen at a port, thereby improving the speed

image-20240922174319496 \[ I_{NIC} =\frac{V_{im} - V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} = \frac{-2V_{ip}}{\frac{2}{g_m}+\frac{1}{sC_c}} \] Therefore \[ Z_{NIC} = \frac{V_{ip} - V_{im}}{I_{NIC}}=\frac{2V_{ip}}{I_{NIC}} =- \frac{2}{g_m}-\frac{1}{sC_c} \] half-circuit

If \(C_{gd}\) is considered, and apply miller effect. half equivalent circuit is shown as below

nic.drawio

B. Razavi, "The Cross-Coupled Pair - Part III [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Issue. 1, pp. 10-13, Winter 2015. [https://www.seas.ucla.edu/brweb/papers/Journals/BR_Magzine3.pdf]

S. Galal and B. Razavi, "10-Gb/s Limiting Amplifier and Laser/Modulator Driver in 0.18um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2138-2146, Dec. 2003. [https://www.seas.ucla.edu/brweb/papers/Journals/G&RDec03_2.pdf]

Flipped Voltage Follower (FVF)

image-20240921110019881

image-20240921113630249

T&H buffer in ADC

image-20240923200147070

[https://www.linkedin.com/posts/chembiyan-t-0b34b910_flipped-voltage-follower-fvf-basics-activity-7118482840803020800-qwyX?utm_source=share&utm_medium=member_desktop]

Z. Guo et al., "A 112.5Gb/s ADC-DSP-Based PAM-4 Long-Reach Transceiver with >50dB Channel Loss in 5nm FinFET," 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, pp. 116-118, doi: 10.1109/ISSCC42614.2022.9731650.

Super-source follower (SSF)

image-20240924213742877

image-20240924213845608

image-20240924213853954

A. Sheikholeslami, "Voltage Follower, Part III [Circuit Intuitions]," in IEEE Solid-State Circuits Magazine, vol. 15, no. 2, pp. 14-26, Spring 2023, doi: 10.1109/MSSC.2023.3269457

Paul R. Gray. 2009. Analysis and Design of Analog Integrated Circuits (5th. ed.). Wiley Publishing.

Double differential Pair

\(V_\text{ip}\) and \(V_\text{im}\) are input, \(V_\text{rp}\) and \(V_\text{rm}\) are reference voltage \[ V_o = A_v(\overline{V_\text{ip} - V_\text{im}} - \overline{V_\text{rp} - V_\text{rm}}) \]

2diffpair.drawio

In differential comparison mode, the feedback loop ensure \(V_\text{ip} = V_\text{rp}\), \(V_\text{im} = V_\text{rm}\) in the end

assume input and reference common voltage are same

Pros of (b)

  • larger input range i.e., \(\gt \pm \sqrt{2}V_\text{ov}\) of (a), it works even one differential is off due to lower voltage
  • larger \(g_m\) (smaller input difference of pair)

Cons of (b)

  • sensitive to the difference of common voltage between \(V_\text{ip}\), \(V_\text{im}\) and \(V_\text{rp}\), \(V_\text{rm}\)

common-mode voltage difference

doublepair_cm.drawio

copy aforementioned formula here for convenience \[ V_o = A_v(\overline{V_\text{ip} - V_\text{im}} - \overline{V_\text{rp} - V_\text{rm}}) \]

at sample phase \(V_\text{ip}= V_\text{im}= V_\text{cmi}\) and \(V_\text{rp}= V_\text{rm}= V_\text{cmr}\)

  • \(I_\text{ip0}= I_\text{im0} = I_\text{i0}\)
  • \(I_\text{rp0}= I_\text{rm0} = I_\text{r0}\)

i.e. \(\overline{I_\text{ip} + I_\text{rm}} - \overline{I_\text{im} + I_\text{rp}} = 0\)

at compare start

  • \(V_\text{ip}= V_\text{im}= V_\text{cmi}\) and \(V_\text{rp}= V_\text{cmr}+\Delta\), \(V_\text{rp}= V_\text{cmr}-\Delta\)

  • \(I_\text{ip}\lt I_\text{ip0}\), \(I_\text{rp} \gt I_\text{rp0}\)

  • \(I_\text{im}\gt I_\text{im0}\), \(I_\text{rm} \lt I_\text{rm0}\)

i.e. \(\overline{I_\text{ip} + I_\text{rm}} - \overline{I_\text{im} + I_\text{rp}} \lt 0\), we need to increase \(V_\text{ip}\) and decrease \(V_\text{im}\).

at the compare finish

\[\begin{align} V_\text{ip}= V_\text{cmi} + \Delta \\ V_\text{im}= V_\text{cmi} - \Delta \end{align}\]

and \(I_\text{ip0}= I_\text{im0} = I_\text{i0}\), \(I_\text{rp0}= I_\text{rm0} = I_\text{r0}\)

i.e. \(\overline{I_\text{ip} + I_\text{rm}} - \overline{I_\text{im} + I_\text{rp}} = 0\)


If \(V_\text{cmr} - V_\text{cmi} = \sqrt{2}V_{OV} + \delta\), and \(\delta \gt 0\). one transistor carries the entire tail current

  • \(I_\text{ip} =0\) and \(I_\text{rp} = I_{SS}\), all the time

At the end, \(V_\text{im} = V_\text{cmi} - (\Delta - \delta)\), the error is \(\delta\)

In closing, \(V_\text{cmr} - V_\text{cmi} \lt \sqrt{2}V_{OV}\) for normal work

Furthermore, the difference between \(V_\text{cmr}\) and \(V_\text{cmi}\) should be minimized due to limited impedance of current source and input pair offset

In the end \[ V_\text{cmr} - V_\text{cmi} \lt \sqrt{2}V_{OV} - V_{OS} \]

Under the condition, every transistor of pairs are on in equilibrium

pair mismatch

diff_mismatch_connect.drawio

\[\begin{align} I_{SE} &= g_m(\sigma_{vth,0} + \sigma_{vth,1}) \\ I_{DE} &= g_m(\sigma_{vth,0} + \sigma_{vth,1}) \end{align}\]

The input equivalient offset voltage \[\begin{align} V_{os,SE} &= \frac{I_{SE}}{2g_m} = \frac{\sigma_{vth,0} + \sigma_{vth,1}}{2} \\ V_{os,DE} &= \frac{I_{DE}}{g_m} = \sigma_{vth,0} + \sigma_{vth,1} \end{align}\]

Then \[\begin{align} \sigma_{vos,SE} &= \sqrt{\frac{2\sigma_{vth}^2}{4}} = \frac{\sigma_{vth}}{\sqrt{2}} \\ \sigma_{vos,DE} &= \sqrt{2\sigma_{vth}^2} = \sqrt{2}\sigma_{vth} \end{align}\]

We obtain \[ \sigma_{vos,DE} = 2\sigma_{vos,SE} \]

peaking without inductor

TODO 📅

How to generate complex poles without inductor? [https://a2d2ic.wordpress.com/2020/02/19/basics-on-active-rc-low-pass-filters/]

Input Diff-Pair

DM Distortion

image-20241027095213326

CM Distortion

image-20241027095248946

Resistive Degeneration

Resistive degeneration in differential pairs serves as one major technique for linear amplifier

image-20240824132739726

The linear region for CMOS differential pair would be extended by \(±I_{SS}R/2\) as all of \(I_{SS}/2\) flows through \(R\). \[\begin{align} V_{in}^+ -V_{in}^- &= V_{OV} + V_{TH}+\frac{I_{SS}}{2}R - V_{TH} \\ &= \sqrt{\frac{2I_{SS}}{\mu_nC_{OX}\frac{W}{L}}} + \frac{I_{SS}R}{2} \end{align}\]

Jri Lee, "Communication Integrated Circuits." https://cc.ee.ntu.edu.tw/~jrilee/publications/Comm_IC.pdf

Figure 14.12, Design of Analog CMOS Integrated Circuits, Second Edition [https://electrovolt.ir/wp-content/uploads/2014/08/Design-of-Analog-CMOS-Integrated-Circuit-2nd-Edition-ElectroVolt.ir_.pdf]

Biasing Tradeoffs in Resistive-Degenerated Diff Pair

image-20241027095520556

Todd Brooks, Broadcom "Input Programmable Gain Amplifier (PGA) Design for ADC Signal Conditioning" [https://classes.engr.oregonstate.edu/eecs/spring2021/ece627/Lecture%20Notes/OSU%20Classroom%20Presentaton%20042511.ppt]

reference

Elad Alon, ISSCC 2014, "T6: Analog Front-End Design for Gb/s Wireline Receivers" [https://picture.iczhiku.com/resource/eetop/wHKfZPYpAleAKXBV.pdf]

Byungsub Kim, ISSCC 2022, "T11: Basics of Equalization Techniques: Channels, Equalization, and Circuits"

Minsoo Choi et al., "An Approximate Closed-Form Channel Model for Diverse Interconnect Applications," IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 61, no. 10, pp. 3034-3043, Oct. 2014.

The average output of DSM tracks the input signal

\(\Delta\Sigma\) modulators are nonlinear systems since a quantizer is implemented in the \(\Delta\Sigma\)-loop


image-20241123140116340

linear settling & GBW of amplifier

TODO 📅

Switched capacitor has been the common realization technique of discrete-time (DT) modulators, and in order to achieve a linear settling, the sampling frequency used in these converters needs to be significantly lower than the gain bandwidth product (GBW) of the amplifiers.

Delta Modulator

image-20240908173930949

\[\begin{align} (V_{in} - V_F) &= D_{out} \\ D_{out} &= s V_F \end{align}\]

Therefore \(V_{in} - \frac{D_{out}}{s} = D_{out}\) \[ D_{out} = \frac{s}{s+1} V_{in} \]

attenuates the low-frequency content of the signal, and amplifies high-frequency noise.

MOD1

image-20241005120659945

  • A binary DAC (and hence a binary modulator) is inherently linear
  • With a CT loop filter, MOD1 has inherent anti-alising

image-20241005202024498 \[\begin{align} v[1] &= u - (0) + e[1] \\ v[2] &= 2u - (v[1]) + e[2] \\ v[3] &= 3u - (v[1]+v[2]) + e[3] \\ v[4] &= 4u - (v[1]+v[2]+v[3]) + e[4] \end{align}\]

That is \[ v[n] = nu - \sum_{k=1}^{n-1}v[k] + e[n] \] Therefore, we have \(v[n-1] = (n-1)u - \sum_{k=1}^{n-2}v[k] + e[n-1]\), then \[\begin{align} v[n] &= nu - \sum_{k=1}^{n-1}v[k] + e[n] \\ &= u + \left((n-1)u - \sum_{k=1}^{n-2}v[k]\right) - v[n-1] + e[n] \\ &= u + v[n-1] - e[n-1] -v[n-1] + e[n] \\ &= u + e[n] - e[n-1] \end{align}\]

MOD2

image-20241005160203074

decimation filter

The combination of the the digital post-filter and downsampler is called the decimation filter or decimator

image-20241015220921002

\(\text{sinc}\) filter

image-20241015215159577

image-20241015215227042

image-20241015225859710

image-20241015215111430

\(\text{sinc}^2\) filter

image-20241015220030204

https://classes.engr.oregonstate.edu/eecs/spring2021/ece627/Lecture%20Notes/First-Order_D-S_ADC_Scan2.pdf

https://classes.engr.oregonstate.edu/eecs/spring2017/ece627/Lecture%20Notes/First-Order%20D-S%20ADC.pdf

Truncation DAC

image-20241022204239594


image-20241019220819728

An implementation of a high-resolution integral path using a digital delta-sigma modulator, low-resolution Nyquist DAC, and a lowpass filter

  • \(\Delta \Sigma\) truncates \(n\)-bit accumulator output to \(m\)-bits with \(m\le n\)
  • A \(m\)-bit Nyquist DAC outputs current, which is fed into a low pass filter that suppresses \(\Delta \Sigma\)'s quantization noise

image-20241022233749243

The remaining 11 bits are truncated to 3-levels using a second-order delta-sigma modulator (DSM), thus, obviating the need for a high resolution DAC

Hanumolu, Pavan Kumar. "Design techniques for clocking high performance signaling systems" [https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1v53k219r]

Mismatch Shaping

image-20241112220458335

Data-Weighted Averaging (DWA)

image-20241113000942025 \[\begin{align} \sum_{i=0}^{n}v[i] + e_\text{DAC}[n] &= y[n] \\ \sum_{i=0}^{n-1}v[i] + e_\text{DAC}[n-1] &= y[n-1] \end{align}\]

and we have \(w[n] = y[n] - y[n-1]\), then \[ w[n] = v[n] + e_\text{DAC}[n] - e_\text{DAC}[n-1] \] i.e. \[ W = V + (1-z^{-1})e_\text{DAC} \]

Element Rotation:

image-20241112233059745

[http://individual.utoronto.ca/schreier/lectures/12-2.pdf], [http://individual.utoronto.ca/trevorcaldwell/course/Mismatch.pdf]

reference

R. Schreier, ISSCC2006 tutorial: Understanding Delta-Sigma Data Converters

Shanthi Pavan, ISSCC2013 T5: Simulation Techniques in Data Converter Design [https://www.nishanchettri.com/isscc-slides/2013%20ISSCC/TUTORIALS/ISSCC2013Visuals-T5.pdf]

Bruce A. Wooley , 2012, "The Evolution of Oversampling Analog-to-Digital Converters" [https://r6.ieee.org/scv-sscs/wp-content/uploads/sites/80/2012/06/Oversampling-Wooley_SCV-ver2.pdf]

B. Razavi, "The Delta-Sigma Modulator [A Circuit for All Seasons]," IEEE Solid-State Circuits Magazine, Volume. 8, Issue. 20, pp. 10-15, Spring 2016. [http://www.seas.ucla.edu/brweb/papers/Journals/BRSpring16DeltaSigma.pdf]

Pavan, Shanthi, Richard Schreier, and Gabor Temes. (2016) 2016. Understanding Delta-Sigma Data Converters. 2nd ed. Wiley.


Richard E. Schreier, ECE 1371 Advanced Analog Circuits - 2015 [http://individual.utoronto.ca/schreier/ece1371-2015.html]

Gabor C. Temes. ECE 627-Oversampled Delta-Sigma Data Converters [https://classes.engr.oregonstate.edu/eecs/spring2017/ece627/lecturenotes.html]

overlapped tuning range

TODO 📅

Mueller-Muller PD

Mueller-Muller type A timing function

image-20241019163636292

Mueller-Muller type B timing function

image-20241019163813449

Least-Mean-Square (LMS)

minimum mean square error (MMSE)

This simplified version of LMS algorithm is identical to the zero-forcing algorithm which minimizes the ISI at data samples

Sign-Sign LMS (SS-LMS)

T11: Basics of Equalization Techniques: Channels, Equalization, and Circuits, 2022 IEEE International Solid-State Circuits Conference

V. Stojanovic et al., "Autonomous dual-mode (PAM2/4) serial link transceiver with adaptive equalization and data recovery," in IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 1012-1026, April 2005, doi: 10.1109/JSSC.2004.842863.

Jinhyung Lee, Design of High-Speed Receiver for Video Interface with Adaptive Equalization; Phd thesis, August 2019. thesis link

Paulo S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation, 5th edition

E. -H. Chen et al., "Near-Optimal Equalizer and Timing Adaptation for I/O Links Using a BER-Based Metric," in IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2144-2156, Sept. 2008

DFE h0 Estimator

summer output \[ r_k = a_kh_0+\left(\sum_{n=-\infty,n\neq0}^{+\infty}a_{k-n}h_n-\sum_{n=1}^{\text{ntap}}\hat{a}_{k-n}\hat{h}_n\right) \] error slicer analog output \[ e_k=r_k-\hat{a}_k \hat{h}_0 \] error slicer digital output \[ \hat{e}_k=|e_k| \] It's NOT possible to implement \(e_k\), which need to determine \(\hat{a}_k=|r_k|\) in no time. One method to approach this problem is calculate \(e_k^{a_k=1}=r_k-\hat{a}_k \hat{h}_0\) and \(e_k^{a_k=-1}=r_k+\hat{a}_k \hat{h}_0\), then select the right one based on \(\hat{a}_k\)

The update equation based on Sign-Sign-Least Mean square (SS-LMS) and loss function \(L(\hat{h}_{\text{0~ntap}})=E(e_k^2)\) \[ \hat{h}_n(k+1) = \hat{h}_n(k)+\mu \cdot |e_k|\cdot \hat{a}_{k-n} \] Where \(n \in [0,...,\text{ntap}]\). This way, we can obtain \(\hat{h}_0\), \(\hat{h}_1\), \(\hat{h}_2\), ...

\(\hat{h}_0\) is used in AFE adaptation

We may encounter difficulty if the first tap of DFE is unrolled, its \(e_k\) is modified as follow \[ r_k = a_kh_0+\left(\sum_{n=-\infty,n\neq0}^{+\infty}a_{k-n}h_n-\sum_{n=2}^{\text{ntap}}\hat{a}_{k-n}\hat{h}_n\right) \] Where there is NO \(\hat{h}_1\)

To find \(\hat{h}_1\), we shall use different pattern for even and odd error slicer

Maximum Likelihood Sequence Estimation (MLSE)

image-20240807233152154

image-20240812205534753

image-20240812205613467

[IBIS-AMI Modeling and Correlation Methodology for ADC-Based SerDes Beyond 100 Gb/s https://static1.squarespace.com/static/5fb343ad64be791dab79a44f/t/63d807441bcd266de258b975/1675102025481/SLIDES_Track02_IBIS_AMI_Modeling_and_Correlation_Tyshchenko.pdf]

M. Emami Meybodi, H. Gomez, Y. -C. Lu, H. Shakiba and A. Sheikholeslami, "Design and Implementation of an On-Demand Maximum-Likelihood Sequence Estimation (MLSE)," in IEEE Open Journal of Circuits and Systems, vol. 3, pp. 97-108, 2022, doi: 10.1109/OJCAS.2022.3173686.

Zaman, Arshad Kamruz (2019). A Maximum Likelihood Sequence Equalizing Architecture Using Viterbi Algorithm for ADC-Based Serial Link. Undergraduate Research Scholars Program. Available electronically from [https://hdl.handle.net/1969.1/166485]

There are several variants of MLSD (Maximum Likelihood Sequence Detection), including:

  • Viterbi Algorithm
  • Decision Feedback Sequence Estimation (DFSE)
  • Soft-Output MLSD

[Evolution Of Equalization Techniques In High-Speed SerDes For Extended Reaches. https://semiengineering.com/evolution-of-equalization-techniques-in-high-speed-serdes-for-extended-reaches/]

image-20240824193839108

Mueller-Muller CDR

image-20240812222307061

MMPD infers the channel response from baud-rate samples of the received data, the adaptation aligns the sampling clock such that pre-cursor is equal to the post-cursor in the pulse response

image-20240807230029591

Faisal A. Musa. "HIGH-SPEED BAUD-RATE CLOCK RECOVERY" [https://www.eecg.utoronto.ca/~tcc/thesis-musa-final.pdf]

Faisal A. Musa."CLOCK RECOVERY IN HIGH-SPEED MULTILEVEL SERIAL LINKS" [https://www.eecg.utoronto.ca/~tcc/faisal_iscas03.pdf]

Eduardo Fuentetaja. "Analysis of the M&M Clock Recovery Algorithm" [https://edfuentetaja.github.io/sdr/m_m_analysis/]

Liu, Tao & Li, Tiejun & Lv, Fangxu & Liang, Bin & Zheng, Xuqiang & Wang, Heming & Wu, Miaomiao & Lu, Dechao & Zhao, Feng. (2021). Analysis and Modeling of Mueller-Muller Clock and Data Recovery Circuits. Electronics. 10. 1888. 10.3390/electronics10161888.

Gu, Youzhi & Feng, Xinjie & Chi, Runze & Chen, Yongzhen & Wu, Jiangfeng. (2022). Analysis of Mueller-Muller Clock and Data Recovery Circuits with a Linearized Model. 10.21203/rs.3.rs-1817774/v1.

Baud-Rate CDRs [https://ocw.snu.ac.kr/sites/default/files/NOTE/Lec%206%20-%20Clock%20and%20Data%20Recovery.pdf]

F. Spagna et al., "A 78mW 11.8Gb/s serial link transceiver with adaptive RX equalization and baud-rate CDR in 32nm CMOS," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010, pp. 366-367, doi: 10.1109/ISSCC.2010.5433823.

K. Yadav, P. -H. Hsieh and A. C. Carusone, "Loop Dynamics Analysis of PAM-4 Mueller–Muller Clock and Data Recovery System," in IEEE Open Journal of Circuits and Systems, vol. 3, pp. 216-227, 2022

Jaeduk Han, "Design and Automatic Generation of 60Gb/s Wireline Transceivers" [https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-143.pdf]

image-20240810095006113

image-20240808001201612

image-20240808001256515

image-20240808001449664

image-20240808001501485

SS-MM CDR

image-20240807232814202

\(h_1\) is necessary

  • without DFE

    SS-MMPD locks at the point (\(h_1=h_{-1}\)​)

  • With a 1-tap DFE

    1-tap adaptive DFE that forces the \(h_1\) to be zero, the SS-MMPD locks wherever the \(h_{-1}\)​ is zero and drifts eventually.

    Consequently, it suffers from a severe multiple-locking problem with an adaptive DFE

image-20240812232618238

Kwangho Lee, "Design of Receiver with Offset Cancellation of Adaptive Equalizer and Multi-Level Baud-Rate Phase Detector" [https://s-space.snu.ac.kr/bitstream/10371/177584/1/000000167211.pdf]

Pattern filter

pattern main cursor
011 \(s_{011}=-h_1+h_0+h_{-1}\)
110 \(s_{110}=h_1+h_0-h_{-1}\)
100 \(s_{100}=h_1-h_0-h_{-1}\)
001 \(s_{001}=-h_1-h_0+h_{-1}\)

During adapting, we make

  • \(s_{011}\) & \(s_{110}\) are approaching to each other
  • \(s_{100}\) & \(s_{001}\) are approaching to each other

Then, \(h_{-1}\) and \(h_1\) are same, which is desired

Bang-Bang CDR

alexander PD or !!PD

The alexander PD locks that edge clock (clkedge) is located at zero crossings of the data. The \(h_{-0.5}\) and \(h_{0.5}\) are equal at the lock point, where the \(h_{-0.5}\) and \(h_{0.5}\) are the cursors located at -0.5 UI and 0.5 UI.

Kwangho Lee, "Design of Receiver with Offset Cancellation of Adaptive Equalizer and Multi-Level Baud-Rate Phase Detector" [https://s-space.snu.ac.kr/bitstream/10371/177584/1/000000167211.pdf]

Shahramian, Shayan, "Adaptive Decision Feedback Equalization With Continuous-time Infinite Impulse Response Filters" [https://tspace.library.utoronto.ca/bitstream/1807/77861/3/Shahramian_Shayan_201606_PhD_thesis.pdf]

MENIN, DAVIDE, "Modelling and Design of High-Speed Wireline Transceivers with Fully-Adaptive Equalization" [https://air.uniud.it/retrieve/e27ce0ca-15f7-055e-e053-6605fe0a7873/Modelling%20and%20Design%20of%20High-Speed%20Wireline%20Transceivers%20with%20Fully-Adaptive%20Equalization.pdf]

reference

Stojanovic, Vladimir & Ho, A. & Garlepp, B. & Chen, Fred & Wei, J. & Alon, Elad & Werner, C. & Zerbe, J. & Horowitz, M.A.. (2004). Adaptive equalization and data recovery in a dual-mode (PAM2/4) serial link transceiver. IEEE Symposium on VLSI Circuits, Digest of Technical Papers. 348 - 351. 10.1109/VLSIC.2004.1346611.

A. A. Bazargani, H. Shakiba and D. A. Johns, "MMSE Equalizer Design Optimization for Wireline SerDes Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, doi: 10.1109/TCSI.2023.3328807.

0%